Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types

J Urenjak, SR Williams, DG Gadian and M Noble
Journal of Neuroscience 1 March 1993, 13 (3) 981-989; DOI: https://doi.org/10.1523/JNEUROSCI.13-03-00981.1993
J Urenjak
Department of Biophysics, Hunterian Institute, Royal College of Surgeons of England, London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SR Williams
Department of Biophysics, Hunterian Institute, Royal College of Surgeons of England, London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DG Gadian
Department of Biophysics, Hunterian Institute, Royal College of Surgeons of England, London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Noble
Department of Biophysics, Hunterian Institute, Royal College of Surgeons of England, London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Proton nuclear magnetic resonance (1H NMR) spectroscopy is a noninvasive technique that can provide information on a wide range of metabolites. Marked abnormalities of 1H NMR brain spectra have been reported in patients with neurological disorders, but their neurochemical implications may be difficult to appreciate because NMR data are obtained from heterogeneous tissue regions composed of several cell populations. The purpose of this study was to examine the 1H NMR profile of major neural cell types. This information may be helpful in understanding the metabolic abnormalities detected by 1H NMR spectroscopy. Extracts of cultured cerebellar granule neurons, cortical astrocytes, oligodendrocyte-type 2 astrocyte (O–2A) progenitor cells, oligodendrocytes, and meningeal cells were analyzed. The purity of the cultured cells was > 95% with all the cell lineages, except for neurons (approximately 90%). Although several constituents (creatine, choline- containing compounds, lactate, acetate, succinate, alanine, glutamate) were ubiquitously detectable with 1H NMR, each cell type had distinctive qualitative and/or quantitative features. Our most unexpected finding was a large amount of N-acetyl-aspartate (NAA) in O– 2A progenitors. This compound, consistently detected by 1H NMR in vivo, was previously thought to ne present only in neurons. The finding that meningeal cells have an alanine:creatine ratio three to four times higher than astrocytes, neurons, or oligodendrocytes is in agreement with observations that meningiomas express a higher alanine:creatine ratio than gliomas. The data suggest that each individual cell type has a characteristic metabolic pattern that can be discriminated by 1H NMR, even by looking at only a few metabolites (e.g., NAA, glycine, beta- hydroxybutyrate).(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (3)
Journal of Neuroscience
Vol. 13, Issue 3
1 Mar 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types
J Urenjak, SR Williams, DG Gadian, M Noble
Journal of Neuroscience 1 March 1993, 13 (3) 981-989; DOI: 10.1523/JNEUROSCI.13-03-00981.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types
J Urenjak, SR Williams, DG Gadian, M Noble
Journal of Neuroscience 1 March 1993, 13 (3) 981-989; DOI: 10.1523/JNEUROSCI.13-03-00981.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.