Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy [published erratum appears in J Neurosci 1993 Jun;13(6):following table of contents]

M Isokawa, MF Levesque, TL Babb and J Engel Jr
Journal of Neuroscience 1 April 1993, 13 (4) 1511-1522; DOI: https://doi.org/10.1523/JNEUROSCI.13-04-01511.1993
M Isokawa
Brain Research Institute, School of Medicine, University of California, Los Angeles 90024–1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MF Levesque
Brain Research Institute, School of Medicine, University of California, Los Angeles 90024–1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TL Babb
Brain Research Institute, School of Medicine, University of California, Los Angeles 90024–1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Engel Jr
Brain Research Institute, School of Medicine, University of California, Los Angeles 90024–1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous histological and immunocytochemical studies suggest that reorganization of the dentate granule cell axons, the mossy fibers, can occur in epileptic human hippocampus (Sutula et al., 1989; Houser et al., 1990; Babb et al., 1991) and in animal models of epilepsy (Tauck and Nadler, 1985; Sutula et al., 1988; Cronin et al., 1992). However, neuroanatomical analyses of the trajectory and morphology of reorganized axons are not yet available. The present study was conducted to investigate single dentate granule cell axonal systems in human epileptic hippocampus. Individual mossy fibers were directly visualized by injecting a tracer (biocytin or Lucifer yellow) intracellularly in hippocampal slices prepared from temporal lobes that were surgically removed from patients for treatment of intractable epilepsy. Two major arborization patterns were identified: (1) the parent axons extended to and coursed through the hilus toward CA3, leaving collaterals along their paths in the hilus (N = 19 neurons); (2) in addition to the aforementioned axonal system, collateral(s) branched from the parent axon near the soma and projected to the granule cell layer and molecular layer, forming an aberrant axonal pathway (N = 9 neurons). These aberrant collaterals bore large boutons similar to those of the hilar axons and formed extensive plexuses in the granule cell layer and/or in the molecular layer. The summed length of collaterals in the granular/molecular layers was 1110.8 microns on average, which was one-fourth of the total summed length of the mossy fibers (3698.5 microns on average). The size of the somata in neurons that had aberrant collaterals was significantly larger than that of neurons without such collaterals (p < 0.025). In four cases, filopodium- like fine processes were present near the axon hillock and proximal parts of the parent axon, suggesting that the aberrant collateral formation might be an ongoing process in these tissues. The lack of control slices from normal living human hippocampus makes it difficult to assess to what extent the present findings are epilepsy associated. However, the presence of aberrant mossy fiber collaterals in the hippocampi used in the present study has been confirmed by Timm's staining and/or dynorphin immunohistochemistry in comparison with nonepileptic autopsy material, indicating its relation to epilepsy (Babb et al., 1991, 1992). At present, there seems to be a consensus that the projection of mossy fiber collaterals to the supragranular layer is a rare occurrence in normal rats (Lorento de No, 1934; Claiborne et al., 1986; Seress et al., 1991; present study), normal monkeys (Seress et al., 1991), and normal humans (Houser et al., 1990).(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (4)
Journal of Neuroscience
Vol. 13, Issue 4
1 Apr 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy [published erratum appears in J Neurosci 1993 Jun;13(6):following table of contents]
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy [published erratum appears in J Neurosci 1993 Jun;13(6):following table of contents]
M Isokawa, MF Levesque, TL Babb, J Engel
Journal of Neuroscience 1 April 1993, 13 (4) 1511-1522; DOI: 10.1523/JNEUROSCI.13-04-01511.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy [published erratum appears in J Neurosci 1993 Jun;13(6):following table of contents]
M Isokawa, MF Levesque, TL Babb, J Engel
Journal of Neuroscience 1 April 1993, 13 (4) 1511-1522; DOI: 10.1523/JNEUROSCI.13-04-01511.1993
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.