Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

An audio-vocal interface in echolocating horseshoe bats

W Metzner
Journal of Neuroscience 1 May 1993, 13 (5) 1899-1915; https://doi.org/10.1523/JNEUROSCI.13-05-01899.1993
W Metzner
Department of Zoology, University of Munich, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The control of vocalization depends significantly on auditory feedback in any species of mammals. Echolocating horseshoe bats, however, provide an excellent model system to study audio-vocal (AV) interactions. These bats can precisely control the frequency of their echolocation calls by monitoring the characteristics of the returning echo; they compensate for flight-induced Doppler shifts in the echo frequency by lowering the frequency of the subsequent vocalization cells (Schnitzler, 1968; Schuller et al., 1974, 1975). It was the aim of this study to investigate the neuronal mechanisms underlying this Doppler-shift compensation (DSC) behavior. For that purpose, the neuronal activity of single units was studied during spontaneous vocalizations of the bats and compared with responses to auditory stimuli such as playback vocalizations and artificially generated acoustic stimuli. The natural echolocation situation was simulated by triggering an acoustic stimulus to the bat's own vocalization and by varying the time delay of this artificial “echo” relative to the vocalization onset. Single-unit activity was observed before, during, and/or after the bat's vocalization as well as in response to auditory stimuli. However, the activity patterns associated with vocalization differed from those triggered by auditory stimuli even when the auditory stimuli were acoustically identical to the bat's vocalization. These neurons were called AV neurons. Their distribution was restricted to an area in the paralemniscal tegmentum of the midbrain. When the natural echolocation situation was stimulated, the responses of AV neurons depended on the time delay between the onset of vocalization and the beginning of the simulated echo. This delay sensitivity disappeared completely when the act of vocalization was replaced by an auditory stimulus that mimicked acoustic self-stimulation during the emission of an echolocation call. The activity of paralemniscal neurons was correlated with all parameters of echolocation calls and echoes that are relevant in context with DSC. These results suggest a model for the regulation of vocalization frequencies by inhibitory auditory feedback.

Back to top

In this issue

The Journal of Neuroscience: 13 (5)
Journal of Neuroscience
Vol. 13, Issue 5
1 May 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An audio-vocal interface in echolocating horseshoe bats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
An audio-vocal interface in echolocating horseshoe bats
W Metzner
Journal of Neuroscience 1 May 1993, 13 (5) 1899-1915; DOI: 10.1523/JNEUROSCI.13-05-01899.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
An audio-vocal interface in echolocating horseshoe bats
W Metzner
Journal of Neuroscience 1 May 1993, 13 (5) 1899-1915; DOI: 10.1523/JNEUROSCI.13-05-01899.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.