Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Nerve growth factor-induced hyperalgesia in the neonatal and adult rat

GR Lewin, AM Ritter and LM Mendell
Journal of Neuroscience 1 May 1993, 13 (5) 2136-2148; DOI: https://doi.org/10.1523/JNEUROSCI.13-05-02136.1993
GR Lewin
Department of Neurobiology and Behavior, SUNY, Stony Brook 11794.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AM Ritter
Department of Neurobiology and Behavior, SUNY, Stony Brook 11794.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Mendell
Department of Neurobiology and Behavior, SUNY, Stony Brook 11794.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recently, we have shown that the interaction between NGF and sensory neurons in early postnatal periods is restricted to nociceptive afferents (Ritter et al., 1991; Lewin et al., 1992a; Ritter and Mendell, 1992). Here we show that administration of excess NGF to neonatal or mature animals can lead to a profound behavioral hyperalgesia. Neonatal NGF treatment (postnatal day 0–14) resulted in a profound mechanical hyperalgesia that persisted until the animals had reached maturity (6 weeks of age). This hyperalgesia could be explained by an NGF-mediated sensitization of A delta nociceptive afferents to mechanical stimuli. This peripheral sensitization wore off with a time course similar to that of the behavior hyperalgesia. Treatment of animals from the second postnatal week until 5 weeks of age (juveniles) led to a very similar behavioral hyperalgesia; however, there was no corresponding sensitization of A delta nociceptors to mechanical stimuli. Finally, one group of adult animals (5 weeks old) was treated daily with single injections of NGF for between 1 and 4 d. Within 24 hr after the first NGF injection these animals developed a mechanical hyperalgesia of the same magnitude seen after neonatal and juvenile NGF treatments. No sensitization of A delta nociceptive afferents was observed in these animals. In addition to the mechanical hyperalgesia, the animals also developed a heat hyperalgesia after one injection of NGF. The heat hyperalgesia was apparent within 15 min after the injection; however, signs of mechanical hyperalgesia were not seen until 6 hr after the injection. In conclusion, it appears that the NGF- induced mechanical hyperalgesia is brought about by different mechanisms in neonatal and adult rats. Furthermore, in adult animals the NGF-induced mechanical and heat hyperalgesia also appear to be attributable to two different mechanisms. The mechanical hyperalgesia may be due to central changes (see Lewin et al., 1992b), whereas the heat hyperalgesia is likely to result at least in part from the sensitization of peripheral receptors to heat.

Back to top

In this issue

The Journal of Neuroscience: 13 (5)
Journal of Neuroscience
Vol. 13, Issue 5
1 May 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nerve growth factor-induced hyperalgesia in the neonatal and adult rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Nerve growth factor-induced hyperalgesia in the neonatal and adult rat
GR Lewin, AM Ritter, LM Mendell
Journal of Neuroscience 1 May 1993, 13 (5) 2136-2148; DOI: 10.1523/JNEUROSCI.13-05-02136.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Nerve growth factor-induced hyperalgesia in the neonatal and adult rat
GR Lewin, AM Ritter, LM Mendell
Journal of Neuroscience 1 May 1993, 13 (5) 2136-2148; DOI: 10.1523/JNEUROSCI.13-05-02136.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.