Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

The development of synaptic function and integration in the central auditory system

DH Sanes
Journal of Neuroscience 1 June 1993, 13 (6) 2627-2637; https://doi.org/10.1523/JNEUROSCI.13-06-02627.1993
DH Sanes
Center for Neural Science, New York University, New York 10003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The development of inhibitory synaptic transmission is difficult to assess because the afferents usually arise from intrinsic neurons that are difficult to stimulate independently. The postnatal maturation of excitatory and inhibitory synaptic function was compared in the gerbil lateral superior olive (LSO), where it is possible to stimulate physically discrete afferent projections. Intracellular recordings obtained in a brain slice preparation revealed that transmission was prominent at birth. The EPSPs and IPSPs were up to 2 orders of magnitude longer than in more mature animals. Brief trains of electrical stimulus pulses led to a temporal summation of postsynaptic potentials (PSPs) in 1–14 d animals resulting in prolonged depolarizations or hyperpolarizations. In neonates, the depolarization could exceed 1 sec following a 70 msec stimulus train. The IPSPs in neonates were often of sufficient amplitude to evoke a rebound depolarization or action potential. The number of converging afferents was estimated from the quantized increases in PSP size. There was a significant decrease with age, suggesting that both inhibitory and excitatory afferents were eliminated during the first 3 postnatal weeks. The integration of action potentials with IPSPs was examined with conjoint stimuli to the two afferent pathways, and demonstrated that the effective IPSP duration decreased approximately 20-fold during the first 3 postnatal weeks. The magnitudes and durations of electrical stimulus-evoked PSPs suggest that spontaneous discharge of afferents to the LSO could have a substantial impact on their development, even prior to the response to airborne sound at 12 d. Furthermore, the synaptic responses obtained at 12–14 d postnatal indicated that both amplitude and temporal processing remain compromised. These immature synaptic properties would be expected to compound the inadequacies present in the cochlea and cochlear nucleus.

Back to top

In this issue

The Journal of Neuroscience: 13 (6)
Journal of Neuroscience
Vol. 13, Issue 6
1 Jun 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The development of synaptic function and integration in the central auditory system
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The development of synaptic function and integration in the central auditory system
DH Sanes
Journal of Neuroscience 1 June 1993, 13 (6) 2627-2637; DOI: 10.1523/JNEUROSCI.13-06-02627.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The development of synaptic function and integration in the central auditory system
DH Sanes
Journal of Neuroscience 1 June 1993, 13 (6) 2627-2637; DOI: 10.1523/JNEUROSCI.13-06-02627.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.