Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina

R Boos, H Schneider and H Wassle
Journal of Neuroscience 1 July 1993, 13 (7) 2874-2888; https://doi.org/10.1523/JNEUROSCI.13-07-02874.1993
R Boos
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Schneider
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Wassle
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

All-amacrine cells are crucial interneurons in the rod pathway of the mammalian retina. They receive input synapses from rod bipolar cells and make electrical output synapses into the ON-pathway and glycinergic chemical synapses into the OFF-pathway. Whole-cell currents from more than 50 voltage-clamped All-amacrine cells were recorded in a slice preparation of the rat retina. The recorded cells were identified by intracellular staining with Lucifer yellow. Spike-like potentials could be elicited upon depolarization by current injection. A voltage- activated, fast, TTX-sensitive, inward Na+ current was identified. A prominent outward K+ current could be suppressed by tetraethylammonium. GABA as well as glycine activated Cl- channels, which could be blocked by bicuculline and strychnine, respectively. Four agonists of excitatory amino acid receptors--kainate (KA), AMPA, 2-amino-4- phosphonobutyrate (APB), and NMDA--were tested. Inward currents at holding potentials of VH = -70 mV were found by application of KA and AMPA but not by application of APB and NMDA. These currents could be blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). ACh did not evoke any current responses.

Back to top

In this issue

The Journal of Neuroscience: 13 (7)
Journal of Neuroscience
Vol. 13, Issue 7
1 Jul 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina
R Boos, H Schneider, H Wassle
Journal of Neuroscience 1 July 1993, 13 (7) 2874-2888; DOI: 10.1523/JNEUROSCI.13-07-02874.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina
R Boos, H Schneider, H Wassle
Journal of Neuroscience 1 July 1993, 13 (7) 2874-2888; DOI: 10.1523/JNEUROSCI.13-07-02874.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.