Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus

SM Dudek and MF Bear
Journal of Neuroscience 1 July 1993, 13 (7) 2910-2918; DOI: https://doi.org/10.1523/JNEUROSCI.13-07-02910.1993
SM Dudek
Brown University Department of Neuroscience, Providence, Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MF Bear
Brown University Department of Neuroscience, Providence, Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previously we showed that delivering 900 pulses to the Schaffer collateral-CA1 pathway at 1–3 Hz causes a lasting depression of synaptic effectiveness that is input specific and dependent on NMDA receptor activation (Dudek and Bear, 1992a). Here we describe experiments aimed at further characterizing this homosynaptic long-term depression (LTD) and comparing it with long-term potentiation (LTP). To address the question of whether depressed synapses can still be potentiated and vice versa, LTP was saturated with repeated high- frequency tetani, and then LTD was induced with low-frequency stimulation (LFS). A second strong tetanus then restored the potentiation, indicating that the same synapses whose transmission had been depressed by LFS were capable of subsequently supporting potentiation. In a complementary experiment, LTD was induced first and then a strong high-frequency tetanus was delivered. We found that the resulting LTP achieved the same absolute magnitude as that observed in control slices that had received the high-frequency stimulation alone. Next, the postnatal development of LTD was investigated in slices prepared from rats at 6–35 d of age. The consequences of LFS were far more pronounced in slices from young rats. LTD following 900 pulses at 1 Hz measured -45 +/- 4% in CA1 of rats less than 2 weeks old as compared with -20 +/- 4 in animals at 5 weeks postnatal. It was also found that LTD precedes the developmental onset of LTP in CA1. Finally, we addressed the question of whether LTD could be saturated by repeated episodes of LFS in slices prepared from 3-week-old rats.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (7)
Journal of Neuroscience
Vol. 13, Issue 7
1 Jul 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus
SM Dudek, MF Bear
Journal of Neuroscience 1 July 1993, 13 (7) 2910-2918; DOI: 10.1523/JNEUROSCI.13-07-02910.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus
SM Dudek, MF Bear
Journal of Neuroscience 1 July 1993, 13 (7) 2910-2918; DOI: 10.1523/JNEUROSCI.13-07-02910.1993
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.