Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Clustering and mobility of voltage-dependent sodium channels during myelination

EH Joe and KJ Angelides
Journal of Neuroscience 1 July 1993, 13 (7) 2993-3005; https://doi.org/10.1523/JNEUROSCI.13-07-02993.1993
EH Joe
Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KJ Angelides
Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In myelinated axons, voltage-dependent sodium channels are segregated at high density at nodes of Ranvier (Rosenbluth, 1976; Waxman and Quick, 1978; Black et al., 1990; Elmer et al., 1990), a distribution that is critical for the saltatory conduction of action potentials (Huxley and Stampfli, 1949). The factors that specifically control the organization and immobilization of sodium channels at nodes are unknown. Recently we have reported that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to maintain sodium channel distribution during differentiation of myelinated nerve (Joe and Angelides, 1992). The specific recruitment of sodium channels at these early stages of myelination and the conspicuous absence of other axon membrane components suggest that the factors governing sodium channel cluster formation show molecular specificity. However, it is not clear whether these clustered sodium channels originate from a redistribution of preexisting diffusely distributed sodium channels. To determine how Schwann cells might regulate sodium channel distribution during myelination we have examined the lateral mobility of fluorescently labeled sodium channels at defined stages of myelination by fluorescence photobleach recovery using tetramethylrhodamine (TmRhd)-labeled Tityus gamma, a sodium channel- specific fluorescent toxin. First, to test whether Schwann cells, in addition to modulating sodium channel distribution, affect the mobility of sodium channels, we cultured dorsal root ganglion neurons in the presence or absence of Schwann cells and monitored sodium channel mobility on cell bodies, axon hillocks, and axons. Even in the absence of Schwann cells, approximately 80% of the sodium channels were immobile on the time scale of the fluorescence photobleach recovery measurement (DL < or equal to 10(-12) cm2/sec), although the remaining fraction of channels are mobile with diffusion coefficients of 5–13 x 10(-11) cm2/sec. Most importantly, in contrast to the effects of Schwann cells on altering the distribution of sodium channels, we found that Schwann cells did not alter the rate of lateral mobility or the mobile fraction of axonal sodium channels. Therefore, although sodium channel distribution depends on Schwann cell contact, immobilization of sodium channels is independent of Schwann cell contact. These effects appear to be specific for sodium channels because 45% of the succinyl concanavalin-A receptors on the axon are mobile, a fraction that decreases to 25% in the presence of Schwann cells later in development. To determine how sodium channels might be immobilized other than by Schwann cell contact, TmRhd-Tityus gamma-labeled dorsal root neurons were treated with 0.5% Triton X-100.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (7)
Journal of Neuroscience
Vol. 13, Issue 7
1 Jul 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Clustering and mobility of voltage-dependent sodium channels during myelination
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Clustering and mobility of voltage-dependent sodium channels during myelination
EH Joe, KJ Angelides
Journal of Neuroscience 1 July 1993, 13 (7) 2993-3005; DOI: 10.1523/JNEUROSCI.13-07-02993.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Clustering and mobility of voltage-dependent sodium channels during myelination
EH Joe, KJ Angelides
Journal of Neuroscience 1 July 1993, 13 (7) 2993-3005; DOI: 10.1523/JNEUROSCI.13-07-02993.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.