Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Choroid tissue supports the survival of ciliary ganglion neurons in vitro

LA Wentzek, CW Bowers, L Khairallah and G Pilar
Journal of Neuroscience 1 July 1993, 13 (7) 3143-3154; https://doi.org/10.1523/JNEUROSCI.13-07-03143.1993
LA Wentzek
Physiology and Neurobiology Department, University of Connecticut, Storrs 06269–3042.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CW Bowers
Physiology and Neurobiology Department, University of Connecticut, Storrs 06269–3042.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Khairallah
Physiology and Neurobiology Department, University of Connecticut, Storrs 06269–3042.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Pilar
Physiology and Neurobiology Department, University of Connecticut, Storrs 06269–3042.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It is well established that during in vivo development the neurons of the avian ciliary ganglion are dependent for their survival on structures in the eye. Separate neuron populations innervate intraocular smooth and striated muscle targets. All ciliary neurons survive when cocultured with striated muscle. We demonstrate that when ciliary ganglion neurons are plated on explants of the choroid coat (a smooth muscle-containing target tissue) using a defined medium (N2), the neurons survive and grow vigorously into the tissue, forming contacts between axons and target cells identified as smooth muscle. Conditioned medium from choroid explants also rescues all the neurons, as does coculturing ciliary ganglion neurons with dissociated choroid cells. However, the presence of horse serum and chick embryo extract in the medium inhibits the choroid's ability to support ciliary neurons. The effects of these additives on the phenotypic expression of the smooth muscle may explain the inability of previous investigators to demonstrate target-derived support from smooth muscle preparations. Because the choroid contains cell types other than smooth muscle (e.g., fibroblasts and endothelial cells), we could not identify smooth muscle as the only cell type responsible for the release of the soluble trophic factor present in the target tissue. However, indirect evidence using avian primary fibroblast cultures, a fibroblast cell line, and an anatomically simple smooth muscle preparation, the avian amnion, suggests that smooth muscle cells are sufficient to account for the observed trophic activity, and that similar target-derived molecules support the survival of both types of ciliary ganglion cells.

Back to top

In this issue

The Journal of Neuroscience: 13 (7)
Journal of Neuroscience
Vol. 13, Issue 7
1 Jul 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Choroid tissue supports the survival of ciliary ganglion neurons in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Choroid tissue supports the survival of ciliary ganglion neurons in vitro
LA Wentzek, CW Bowers, L Khairallah, G Pilar
Journal of Neuroscience 1 July 1993, 13 (7) 3143-3154; DOI: 10.1523/JNEUROSCI.13-07-03143.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Choroid tissue supports the survival of ciliary ganglion neurons in vitro
LA Wentzek, CW Bowers, L Khairallah, G Pilar
Journal of Neuroscience 1 July 1993, 13 (7) 3143-3154; DOI: 10.1523/JNEUROSCI.13-07-03143.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.