Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Visual effects of lesions of cortical area V2 in macaques

WH Merigan, TA Nealey and JH Maunsell
Journal of Neuroscience 1 July 1993, 13 (7) 3180-3191; DOI: https://doi.org/10.1523/JNEUROSCI.13-07-03180.1993
WH Merigan
Center for Visual Science, University of Rochester, New York 14642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TA Nealey
Center for Visual Science, University of Rochester, New York 14642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Maunsell
Center for Visual Science, University of Rochester, New York 14642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Ibotenic acid lesions were placed in two monkeys in a portion of cortical area V2 that corresponds to a lower quadrant of the visual field extending approximately 3–7 degrees from the fovea. For purposes of comparison, another lesion was placed in area V1 in one animal. A wide range of visual capacities were then measured, using a discrimination between vertical and horizontal orientation, in and near the affected regions of the visual field. Visual acuity declined sharply as the test stimulus approached the visual field location corresponding to the V1 lesion, and no threshold could be measured at its center. In contrast, lesions of area V2 caused no measurable decrease in acuity, nor was there any substantial effect on several measures of contrast sensitivity. Subsequently, two types of more complex visual discriminations were measured (also using a vertical- horizontal discrimination), and these discriminations were severely disrupted by V2 lesions. The first discrimination was of the orientation of two parallel lines of five colinear dots each. We measured the number of background dots that would bring the discrimination to threshold, and this number of dots was greatly decreased by a V2 lesion. The second discrimination was of the orientation of a group of three distinctive texture elements embedded in a six by six element texture. This task could not be done in the visual field region affected by the V2 lesion when the distinctive elements differed in orientation from the others. Control experiments showed that the discrimination could be done when the three distinctive elements differed in size or color. These results suggest that cortical area V2 is not needed for some low-level discriminations, but may be essential for tasks involving complex spatial discriminations.

Back to top

In this issue

The Journal of Neuroscience: 13 (7)
Journal of Neuroscience
Vol. 13, Issue 7
1 Jul 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Visual effects of lesions of cortical area V2 in macaques
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Visual effects of lesions of cortical area V2 in macaques
WH Merigan, TA Nealey, JH Maunsell
Journal of Neuroscience 1 July 1993, 13 (7) 3180-3191; DOI: 10.1523/JNEUROSCI.13-07-03180.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Visual effects of lesions of cortical area V2 in macaques
WH Merigan, TA Nealey, JH Maunsell
Journal of Neuroscience 1 July 1993, 13 (7) 3180-3191; DOI: 10.1523/JNEUROSCI.13-07-03180.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.