Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones

S Huang and SA Moody
Journal of Neuroscience 1 August 1993, 13 (8) 3193-3210; DOI: https://doi.org/10.1523/JNEUROSCI.13-08-03193.1993
S Huang
Department of Anatomy and Neuroscience Program, George Washington University Medical Center, Washington, D.C. 20037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SA Moody
Department of Anatomy and Neuroscience Program, George Washington University Medical Center, Washington, D.C. 20037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The clonal origin of the stage 43–44 Xenopus retina from cleavage stage precursors was quantitatively assessed with lineage tracing techniques. The retina descends from a specific subset of those blastomeres that form forebrain. The most animal dorsal midline cell (D1.1.1) produced about half of the retina, the three other dorsal ipsilateral blastomeres each produce about an eighth of the retina, and the four contralateral dorsal blastomeres and an ipsilateral ventral-animal cell together produce the remaining eighth of the retina. There was no significant spatial segregation of the clones derived from different progenitors in either the anterior-posterior or dorsal-ventral axes of the retina and no boundaries between clones were observed. Instead, the clones intermixed to form multiple radial subclones that were equivalent to those demonstrated by marking optic vesicle progenitor cells (Holt et al., 1988; Wetts and Fraser, 1988). This mosaic pattern was initiated by the beginning of gastrulation, advanced in the neural plate, and virtually complete in the optic vesicle. At optic vesicle stages cell movement within subclones was restricted, resulting in the formation of lineally related columns of cells in the mature retina. To determine if the blastomere progenitors are determined to produce these retinal lineage patterns, the major retinal progenitor (D1.1.1) was deleted bilaterally. About 60% of the tadpoles developed normal- appearing eyes; of these the retinas in two-thirds were normal in size and the rest were smaller. The blastomeres surrounding the deleted D1.1.1 progenitors changed their contributions to retina in different ways to effect a complete or partial restoration. Ventral blastomeres, which normally contribute mainly to the tail, produced substantial amounts of the retina while dorsal blastomeres, which normally contribute mainly to the head, decreased their contribution to the retina. To determine whether these changes in retinal lineage were due to changes in blastomere position after the surgery, various other blastomeres were deleted prior to lineage mapping. Dorsal-animal blastomeres took over the retinal fate of their dorsal-vegetal neighbors after those neighbors were deleted, but did not change fate after the deletion of their ventral-animal neighbors. This result suggests that dorsal-animal blastomeres change positional values in only one direction (dorsal to vegetal) after neighbor cell deletion, and that retinal fate is dictated by blastomere position. To test this hypothesis directly, different ventral and vegetal blastomeres, which normally do not produce retina, were transplanted to the position of D1.1.1.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (8)
Journal of Neuroscience
Vol. 13, Issue 8
1 Aug 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones
S Huang, SA Moody
Journal of Neuroscience 1 August 1993, 13 (8) 3193-3210; DOI: 10.1523/JNEUROSCI.13-08-03193.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones
S Huang, SA Moody
Journal of Neuroscience 1 August 1993, 13 (8) 3193-3210; DOI: 10.1523/JNEUROSCI.13-08-03193.1993
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.