Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Inward-rectifying potassium channels in retinal glial (Muller) cells

EA Newman
Journal of Neuroscience 1 August 1993, 13 (8) 3333-3345; DOI: https://doi.org/10.1523/JNEUROSCI.13-08-03333.1993
EA Newman
Department of Physiology, University of Minnesota, Minneapolis 55455.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The voltage- and K(+)-dependent properties of Muller cell currents and channels were characterized in freshly dissociated salamander Muller cells. In whole-cell voltage-clamp experiments, cells with endfeet intact and cells missing endfeet both displayed strong inward rectification. The rectification was similar in shape in both groups of cells but currents were 9.2 times larger in cells with endfeet. Ba2+ at 100 microM reduced the inward current to 6.8% of control amplitude. Decreasing external K+ concentration shifted the cell current-voltage (I-V) relation in a hyperpolarizing direction and reduced current magnitude. In multichannel, cell-attached patch-clamp experiments, patches from both endfoot and soma membrane displayed strong inward rectification. Currents were 38 times larger in endfoot patches. In single-channel, cell-attached patch-clamp experiments, inward- rectifying K+ channels were, in almost all cases, the only channels present in patches of endfoot, proximal process, and soma membrane. Channel conductance was 27.8 pS in 98 mM external K+. Reducing external K+ shifted the channel reversal potential in a hyperpolarizing direction and reduced channel conductance. Channel open probability varied as a function of voltage, being reduced at more negative potentials. Together, these observations demonstrate that the principal ion channel in all Muller cell regions is an inward-rectifying K+ channel. Channel density is far higher on the cell endfoot than in other cell regions. Whole-cell I-V plots of cells bathed in 12, 7, 4, and 2.5 mM K+ were fit by an equation including Boltzmann relation terms representing channel rectification and channel open probability. This equation was incorporated into a model of K+ dynamics in the retina to evaluate the significance of inward-rectifying channels to the spatial buffering/K+ siphoning mechanism of K+ regulation. Compared with ohmic channels, inward-rectifying channels increased the rate of K+ clearance from the retina by 23% for a 1 mM K+ increase and by 137% for a 9.5 mM K+ increase, demonstrating that Muller cell inward- rectifying channels enhance K+ regulation in the retina.

Back to top

In this issue

The Journal of Neuroscience: 13 (8)
Journal of Neuroscience
Vol. 13, Issue 8
1 Aug 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inward-rectifying potassium channels in retinal glial (Muller) cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Inward-rectifying potassium channels in retinal glial (Muller) cells
EA Newman
Journal of Neuroscience 1 August 1993, 13 (8) 3333-3345; DOI: 10.1523/JNEUROSCI.13-08-03333.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Inward-rectifying potassium channels in retinal glial (Muller) cells
EA Newman
Journal of Neuroscience 1 August 1993, 13 (8) 3333-3345; DOI: 10.1523/JNEUROSCI.13-08-03333.1993
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.