Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Differential spatial and temporal gene expression in response to axotomy and deafferentation following transection of the medial forebrain bundle

M Weiser, H Baker, TC Wessel and TH Joh
Journal of Neuroscience 1 August 1993, 13 (8) 3472-3484; DOI: https://doi.org/10.1523/JNEUROSCI.13-08-03472.1993
M Weiser
Cornell University Medical College, W. M. Burke Medical Research Institute, White Plains, New York 10605.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Baker
Cornell University Medical College, W. M. Burke Medical Research Institute, White Plains, New York 10605.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TC Wessel
Cornell University Medical College, W. M. Burke Medical Research Institute, White Plains, New York 10605.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TH Joh
Cornell University Medical College, W. M. Burke Medical Research Institute, White Plains, New York 10605.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Alterations in the levels of neurotransmitter biosynthetic enzymes are a concomitant of many neurodegenerative disorders. In order to elucidate potential mechanisms for longterm alterations in biosynthetic enzyme gene products in response to neuronal injury, an acute axotomy/deafferentation model was employed. A unilateral microknife transection of the medial forebrain bundle (MFB) axotomizes and/or deafferents phenotypically identified neuronal populations important in the function of the basal ganglia. Semi-quantitative in situ hybridization and immunohistochemical analysis demonstrated that the products of the immediate-early gene c-fos were induced postaxotomy in the noradrenergic neurons of the locus ceruleus (LC), but not in the dopaminergic neurons of the substantia nigra pars compacta (SNc). Analysis of the levels of mRNA, protein, and activity for tyrosine hydroxylase demonstrated that the LC neurons survive the injury while the SNc neurons degenerate. After MFB transection, Fos protein also was induced in the corpus striatum within 1 hr, first in large, putatively cholinergic neuronal populations followed at 3 hr by the small, putatively GABAergic neurons. The substantia nigra pars reticulata and the subthalamic nucleus neuronal populations, deafferented by the MFB transection, also exhibited Fos induction beginning at 3 hr. The data suggest that expression of Fos in a neuronal population is correlative with respect to cell survival following either axotomy or deafferentation. Whether Fos induction following injury is either a necessary mechanism of cell survival or merely a marker of increased neuronal activity requires further investigation.

Back to top

In this issue

The Journal of Neuroscience: 13 (8)
Journal of Neuroscience
Vol. 13, Issue 8
1 Aug 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential spatial and temporal gene expression in response to axotomy and deafferentation following transection of the medial forebrain bundle
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Differential spatial and temporal gene expression in response to axotomy and deafferentation following transection of the medial forebrain bundle
M Weiser, H Baker, TC Wessel, TH Joh
Journal of Neuroscience 1 August 1993, 13 (8) 3472-3484; DOI: 10.1523/JNEUROSCI.13-08-03472.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential spatial and temporal gene expression in response to axotomy and deafferentation following transection of the medial forebrain bundle
M Weiser, H Baker, TC Wessel, TH Joh
Journal of Neuroscience 1 August 1993, 13 (8) 3472-3484; DOI: 10.1523/JNEUROSCI.13-08-03472.1993
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.