Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro

JW Mandell, PR MacLeish and E Townes-Anderson
Journal of Neuroscience 1 August 1993, 13 (8) 3533-3548; DOI: https://doi.org/10.1523/JNEUROSCI.13-08-03533.1993
JW Mandell
Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PR MacLeish
Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Townes-Anderson
Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To assess the regenerative capability of the photoreceptor synapse, we have isolated and cultured photoreceptors from the mature salamander retina. Both rod and cone photoreceptors were able to regenerate processes within 3 d of plating. Cells extended numerous actin- containing filopodia as well as a few neuritic processes. The neurites contained microtubules and formed synaptic vesicle-filled varicosities, as shown by immunostaining for tubulin and synaptic vesicle proteins and by electron microscopy. Furthermore, regenerated varicosities were capable of depolarization-induced vesicle labeling, suggesting that they can recycle synaptic vesicles and release neurotransmitter by synaptic vesicle exocytosis. Differences were observed between rod and cone cell synaptic regeneration in vitro, which resembled structural differences between their synaptic terminals in situ: rod cells formed multiple synaptic vesicle-filled varicosities along neurites at a distance from the soma, whereas cone cells tended to accumulate synaptic vesicles within the soma. The regeneration of neurites and synaptic vesicle-filled varicosities was abolished by microtubule depolymerizing agents, suggesting a role for microtubule-based vesicle transport in the formation of varicosities. Finally, process outgrowth and varicosity formation were independent of cell-cell contact and, indeed, proceeded in the complete absence of other cells. These findings suggest not only that differentiated photoreceptors are capable of synaptic renewal but that the regeneration of presynaptic- like terminals is an intrinsic ability of rod and cone cells.

Back to top

In this issue

The Journal of Neuroscience: 13 (8)
Journal of Neuroscience
Vol. 13, Issue 8
1 Aug 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro
JW Mandell, PR MacLeish, E Townes-Anderson
Journal of Neuroscience 1 August 1993, 13 (8) 3533-3548; DOI: 10.1523/JNEUROSCI.13-08-03533.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro
JW Mandell, PR MacLeish, E Townes-Anderson
Journal of Neuroscience 1 August 1993, 13 (8) 3533-3548; DOI: 10.1523/JNEUROSCI.13-08-03533.1993
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.