Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A system for characterizing cellular and molecular events in programmed neuronal cell death

RN Pittman, S Wang, AJ DiBenedetto and JC Mills
Journal of Neuroscience 1 September 1993, 13 (9) 3669-3680; DOI: https://doi.org/10.1523/JNEUROSCI.13-09-03669.1993
RN Pittman
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Wang
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AJ DiBenedetto
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Mills
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A model system has been established in which PC12 cells are converted to neuronal-like cells that undergo transcription-dependent cell death following removal of NGF. Nineteen sublines of PC12 cells were tested to establish parameters for making cells dependent on NGF for survival. In most sublines, a relatively small percentage of cells become dependent on NGF for survival, and following removal of NGF, most of the cells begin proliferating in serum-containing medium. In several sublines, however, a significant percentage of cells die following removal of NGF. One of these sublines, PC6–3, can be grown under conditions in which 90% of the cells undergo transcription-dependent cell death following removal of NGF in either serum-free or serum- containing medium. Fourteen hours after removing NGF, 50% of the cells are committed to die, while initial morphological signs of cell death as determined by time-lapse videomicroscopy occur 2–6 hr later and include loss of neurites followed by a 1–3 hr period of active membrane “blebbing” and protrusions. Cell death can be blocked by the RNA synthesis inhibitor actinomycin D, the protein synthesis inhibitor cycloheximide, KCl, basic fibroblast growth factor, or dibutryl-cAMP, but not by epidermal growth factor, leupeptin, or the endonuclease inhibitor aurintricarboxylic acid (ATA). Removal of NGF activates an endonuclease that causes nucleosomal laddering of the DNA; however, endonuclease activity does not appear to be required for cell death. In agreement with previous studies (Batistatou and Greene, 1991; Rukenstein et al., 1991) demonstrating that naive PC12 cells undergo transcription-independent cell death when shifted into serum-free medium in the absence of growth factors, all cell lines tested except for one die when cultured in RPMI medium lacking growth factors. DNA fragmentation is a prominent feature of transcription-independent cell death, and death can be blocked with NGF, ATA, and dibutryl-cAMP but not with actinomycin D or KCl. The PC12 model system described here should be useful for identifying cell death genes and for characterizing cellular and molecular events in programmed neuronal cell death.

Back to top

In this issue

The Journal of Neuroscience: 13 (9)
Journal of Neuroscience
Vol. 13, Issue 9
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A system for characterizing cellular and molecular events in programmed neuronal cell death
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A system for characterizing cellular and molecular events in programmed neuronal cell death
RN Pittman, S Wang, AJ DiBenedetto, JC Mills
Journal of Neuroscience 1 September 1993, 13 (9) 3669-3680; DOI: 10.1523/JNEUROSCI.13-09-03669.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A system for characterizing cellular and molecular events in programmed neuronal cell death
RN Pittman, S Wang, AJ DiBenedetto, JC Mills
Journal of Neuroscience 1 September 1993, 13 (9) 3669-3680; DOI: 10.1523/JNEUROSCI.13-09-03669.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.