Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila

M Gorczyca, C Augart and V Budnik
Journal of Neuroscience 1 September 1993, 13 (9) 3692-3704; DOI: https://doi.org/10.1523/JNEUROSCI.13-09-03692.1993
M Gorczyca
Department of Biology, University of Massachusetts, Amherst 01003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Augart
Department of Biology, University of Massachusetts, Amherst 01003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Budnik
Department of Biology, University of Massachusetts, Amherst 01003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Insulin and insulin-like growth factor (IGF) receptors are members of the tyrosine kinase family of receptors, and are thought to play an important role in the development and differentiation of neurons. Here we report the presence of an insulin-like peptide and an insulin receptor (dInsR) at the body wall neuromuscular junction of developing Drosophila larvae. dInsR-like immunoreactivity was found in all body wall muscles at the motor nerve branching regions, where it surrounded synaptic boutons. The identity of this immunoreactivity as a dInsR was confirmed by two additional schemes, in vivo binding of labeled insulin and immunolocalization of phosphotyrosine. Both methods produced staining patterns markedly similar to dInsR-like immunoreactivity. The presence of a dInsR in whole larvae was also shown by receptor binding assays. This receptor was more specific for insulin (> 25-fold) than for IGF II, and did not appear to bind IGF I. Among the 30 muscle fibers per hemisegment, insulin-like immunoreactivity was found only on one fiber, and was localized to a subset of morphologically distinct synaptic boutons. Staining in the CNS was limited to several cell bodies in the brain lobes and in a segmental pattern throughout most of the abdominal ganglia, as well as in varicosities along the neuropil areas of the ventral ganglion and brain lobes. Insulin-like peptide and dInsR were first detected by early larval development, well after neuromuscular transmission begins. The developmental significance of an insulin-like peptide and its receptor at the neuromuscular junction is discussed.

Back to top

In this issue

The Journal of Neuroscience: 13 (9)
Journal of Neuroscience
Vol. 13, Issue 9
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila
M Gorczyca, C Augart, V Budnik
Journal of Neuroscience 1 September 1993, 13 (9) 3692-3704; DOI: 10.1523/JNEUROSCI.13-09-03692.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila
M Gorczyca, C Augart, V Budnik
Journal of Neuroscience 1 September 1993, 13 (9) 3692-3704; DOI: 10.1523/JNEUROSCI.13-09-03692.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.