Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress

D Diorio, V Viau and MJ Meaney
Journal of Neuroscience 1 September 1993, 13 (9) 3839-3847; DOI: https://doi.org/10.1523/JNEUROSCI.13-09-03839.1993
D Diorio
Douglas Hospital Research Center, Department of Psychiatry, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Viau
Douglas Hospital Research Center, Department of Psychiatry, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MJ Meaney
Douglas Hospital Research Center, Department of Psychiatry, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the studies reported here we have examined the role of the medial prefrontal cortex (MpFC) in regulating hypothalamic-pituitary-adrenal (HPA) activity under basal and stressful conditions. In preliminary studies we characterized corticosteroid receptor binding in the rat MpFC. The results revealed high-affinity (Kd approximately 1 nM) binding with a moderate capacity (42.9 +/- 3 fmol/mg) for 3H- aldosterone (with a 50-fold excess of cold RU28362; mineralocorticoid receptor) and high-affinity (Kd approximately 0.5–1.0 nM) binding with higher capacity (183.2 +/- 22 fmol/mg) for 3H-RU 28362 (glucocorticoid receptor). Lesions of the MpFC (cingulate gyrus) significantly increased plasma levels of both adrenocorticotropin (ACTH) and corticosterone (CORT) in response to a 20 min restraint stress. The same lesions had no effect on hormone levels following a 2.5 min exposure to ether. Implants of crystalline CORT into the same region of the MpFC produced a significant decrease in plasma levels of both ACTH and CORT with restraint stress, but again, there was no effect with ether stress. Neither MpFC lesions nor CORT implants had any consistent effect on A.M. or P.M. levels of plasma ACTH or CORT. Manipulations of MpFC function were not associated with changes in the clearance rate for CORT or in corticosteroid receptor densities in the pituitary, hypothalamus, hippocampus, or amygdala. Taken together, these findings suggest that MpFC is a target site for the negative-feedback effects of glucocorticoids on stress-induced HPA activity, and that this effect is dependent upon the nature of the stress.

Back to top

In this issue

The Journal of Neuroscience: 13 (9)
Journal of Neuroscience
Vol. 13, Issue 9
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress
D Diorio, V Viau, MJ Meaney
Journal of Neuroscience 1 September 1993, 13 (9) 3839-3847; DOI: 10.1523/JNEUROSCI.13-09-03839.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress
D Diorio, V Viau, MJ Meaney
Journal of Neuroscience 1 September 1993, 13 (9) 3839-3847; DOI: 10.1523/JNEUROSCI.13-09-03839.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.