Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis

JD Macklis
Journal of Neuroscience 1 September 1993, 13 (9) 3848-3863; DOI: https://doi.org/10.1523/JNEUROSCI.13-09-03848.1993
JD Macklis
Department of Neurology, Harvard Medical School, Boston, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Selective degeneration of neocortical callosal pyramidal neurons by noninvasive laser illumination was used for directed studies of neocortical transplantation, to test the hypothesis that transplanted embryonic neurons may seek to restore normal cytoarchitecture within an appropriately permissive local environment. At long wavelengths that penetrate through tissue without major absorption, photolysis can cause extremely selective degeneration to desired subpopulations of targeted neurons in vivo (Macklis and Madison, 1991; Madison and Macklis, 1993). Cell death is geographically defined and slowly progressive, allowing control over the anatomical substrate for transplantation. Targeting occurs by retrograde incorporation of cytolytic chromophores that are activated by specific-wavelength light. Intermixed neurons, glia, axons, blood vessels, and connective tissue remain intact. Degeneration was effected within neocortical lamina II/III of neonatal mouse pups following targeting in utero or early postnatally with photoactive nanospheres. Total neuron density was reduced typically by 25–30% within defined areas, with approximately 60% loss of large projection neurons and no change in the number of small, presumptive interneurons. Embryonic day 17 neocortical cell suspensions, which included recently postmitotic neurons destined to form lamina II/III, were transplanted lateral to these regions of ongoing neuron degeneration in juvenile mice. Cellular injections spanned laminae II-V, to provide donor neurons with both lateral and laminar choice for possible migration and integration. Donor cells were labeled in vitro with unique fluorescent and electron-dense nanospheres that allowed distinct identification of donor cells at both light and electron microscopic levels. Control experiments included neocortical transplants into intact age-matched hosts, into hosts with kainic acid lesions to neocortex, or distant to the region of photolytic neuronal degeneration; embryonic cerebellar transplants to the regions of selective photolytic degeneration; and grafts of hypoosmotically lysed neocortical cells to lesioned regions. After survival times of 1 hr to 12 weeks, labeled neurons were identified morphologically and positions were digitized for qualitative and quantitative analysis of position and specificity of migration and cellular integration; electron microscopy was used to confirm further the donor identities of migrated neurons. Neurons placed near host zones of photolytic neuron degeneration migrated up to 780 microns specifically within these zones; approximately 44% of donor neurons migrated significantly beyond the injection site to enter these regions. Migration and integration did not occur in normal, unaffected deeper layers IV-VI of these experimental mice, or in the normal lamina II/III bordering the transplantation site on the side opposite the neuron-deficient region. Control grafts of all five types revealed only minimal local spread without laminar preference.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (9)
Journal of Neuroscience
Vol. 13, Issue 9
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis
JD Macklis
Journal of Neuroscience 1 September 1993, 13 (9) 3848-3863; DOI: 10.1523/JNEUROSCI.13-09-03848.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis
JD Macklis
Journal of Neuroscience 1 September 1993, 13 (9) 3848-3863; DOI: 10.1523/JNEUROSCI.13-09-03848.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.