Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents

KA Yamada and CM Tang
Journal of Neuroscience 1 September 1993, 13 (9) 3904-3915; DOI: https://doi.org/10.1523/JNEUROSCI.13-09-03904.1993
KA Yamada
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CM Tang
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A distinctive characteristic of the AMPA subset of glutamate receptor channels is their remarkably rapid desensitization. A family of compounds, the benzothiadiazides, is described here that potently inhibit rapid glutamate receptor desensitization. The structure- activity relationships of these compounds are examined and the actions of cyclothiazide (CYZ), the most potent of these compounds, are described in detail. At the macroscopic level CYZ reduced rapid desensitization, enhancing the steady-state and peak current produced by 1 mM quisqualate with EC50 values of 14 and 12 microM, respectively, and shifted the quisqualate peak current concentration-response relation to the left. The slight outward rectification of the steady- state quisqualate current-voltage relationship was reduced by CYZ. At the microscopic level CYZ caused glutamate to induce long bursts of channel openings, and greatly increased the number of repeated openings. At 10 microM CYZ did not have measurable effects on the fast component of deactivation nor did it have statistically significant effects on the distribution of the faster components of glutamate- induced burst duration. In contrast, 10 microM CYZ increased the amplitude and significantly prolonged the duration of the spontaneous miniature EPSCs. The identification and characterization of this new family of gating modifiers may further facilitate the investigation into the mechanisms underlying rapid glutamate receptor desensitization and the physiological roles that it may serve.

Back to top

In this issue

The Journal of Neuroscience: 13 (9)
Journal of Neuroscience
Vol. 13, Issue 9
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents
KA Yamada, CM Tang
Journal of Neuroscience 1 September 1993, 13 (9) 3904-3915; DOI: 10.1523/JNEUROSCI.13-09-03904.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents
KA Yamada, CM Tang
Journal of Neuroscience 1 September 1993, 13 (9) 3904-3915; DOI: 10.1523/JNEUROSCI.13-09-03904.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.