Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro

A Lochter and M Schachner
Journal of Neuroscience 1 September 1993, 13 (9) 3986-4000; DOI: https://doi.org/10.1523/JNEUROSCI.13-09-03986.1993
A Lochter
Department of Neurobiology, Swiss Federal Institute of Technology, Zurich.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Schachner
Department of Neurobiology, Swiss Federal Institute of Technology, Zurich.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The extracellular matrix molecules tenascin, laminin, and fibronectin, the cell adhesion molecule L1, and the lectin concanavalin A (ConA) were tested for their effects on neuritogenesis in cultures of hippocampal neurons. We analyzed neurite outgrowth between 3 and 21 hr after plating and found that, on polyornithine as control substrate, lengths of axon-like major neurites and dendrite-like minor neurites increased continuously with time in culture. Moreover, growth of minor neurites was faster than growth of major neurites. When the extracellular matrix molecules tenascin, laminin, and fibronectin were coated on polyornithine substrates, growth of all neurites was faster than on control substrates during the first hours of culture. After this initial phase of enhanced neurite outgrowth, elongation of major neurites continued at a higher rate than on the control substrate and growth of minor neurites ceased after 12 hr. Correspondingly, neuronal polarity was strongly increased on the extracellular matrix substrates during later phases of culture. In contrast, lengths of both major and minor neurites were increased over control values on L1 and ConA substrates at all time points investigated. Thus, neuronal polarity was similar for control, L1, and ConA substrates. Spreading of neuronal cell bodies was reduced by about 50% on tenascin, laminin, and fibronectin and by less than 20% on L1 and ConA substrates after 21 hr of culture, when compared to the control substrate. Neuron-to-substrate adhesion was reduced on all three extracellular matrix substrates but not affected on L1 or ConA substrates, after 3 and 21 hr of culture. These observations indicate that induction of neuronal polarity is not a general feature of neurite outgrowth-promoting molecules, such as L1 or ConA, but a distinctive property of the three extracellular matrix glycoproteins studied, and may suggest that enhancement of polarity is correlated with decreased strength of adhesion.

Back to top

In this issue

The Journal of Neuroscience: 13 (9)
Journal of Neuroscience
Vol. 13, Issue 9
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro
A Lochter, M Schachner
Journal of Neuroscience 1 September 1993, 13 (9) 3986-4000; DOI: 10.1523/JNEUROSCI.13-09-03986.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro
A Lochter, M Schachner
Journal of Neuroscience 1 September 1993, 13 (9) 3986-4000; DOI: 10.1523/JNEUROSCI.13-09-03986.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.