Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear

TT Tsue, DL Watling, P Weisleder, MD Coltrera and EW Rubel
Journal of Neuroscience 1 January 1994, 14 (1) 140-152; https://doi.org/10.1523/JNEUROSCI.14-01-00140.1994
TT Tsue
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DL Watling
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Weisleder
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MD Coltrera
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EW Rubel
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Postembryonic production of sensory hair cells occurs in both normal and aminoglycoside-damaged avian inner ears. The cellular source and mechanism that results in new differentiated hair cells were investigated in the avian vestibular epithelia using three distinct cell-cycle-specific labeling methods to identify proliferating sensory epithelial cells. First, immunocytochemical detection of the proliferating cell nuclear antigen, an auxiliary protein of DNA polymerase, allowed labeling of cells in late G1, S, and early G2 phases of the cell cycle. Second, a pulse-fix tritiated thymidine autoradiographic protocol was used to identify cells in S phase of the cell cycle. Finally, Hoechst 33342, a fluorescent DNA stain, was used to identify epithelial cells in mitosis. The distribution of cells active in the cell cycle within the normal and ototoxin-damaged vestibular epithelium suggests that supporting cells within the sensory epithelia are the cellular precursors to the regenerated hair cells. Differences between the proliferation marker densities in control and damaged end organs indicate that the upregulation of mitotic activity observed after streptomycin treatment is due primarily to an increase in the number of dividing progenitor cells. The differences between the extent of ototoxic damage and the level of reparative proliferative response suggest a generalized stimulus, such as a soluble chemical factor, plays a role in initiating regeneration. Finally, after DNA replication is initiated, progenitor cell nuclei migrate from their original location close to the basement membrane to the lumenal surface, where cell division occurs. This pattern of intermitotic nuclear migration is analogous to that observed in the developing inner ear and neural epithelium.

Back to top

In this issue

The Journal of Neuroscience: 14 (1)
Journal of Neuroscience
Vol. 14, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear
TT Tsue, DL Watling, P Weisleder, MD Coltrera, EW Rubel
Journal of Neuroscience 1 January 1994, 14 (1) 140-152; DOI: 10.1523/JNEUROSCI.14-01-00140.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear
TT Tsue, DL Watling, P Weisleder, MD Coltrera, EW Rubel
Journal of Neuroscience 1 January 1994, 14 (1) 140-152; DOI: 10.1523/JNEUROSCI.14-01-00140.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.