Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Autosomal recessive neuromuscular disorder in a transgenic line of mice

D Kelly, K Chancellor, A Milatovich, U Francke, K Suzuki and B Popko
Journal of Neuroscience 1 January 1994, 14 (1) 198-207; https://doi.org/10.1523/JNEUROSCI.14-01-00198.1994
D Kelly
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Chancellor
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Milatovich
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
U Francke
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Suzuki
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Popko
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have generated a line of transgenic mice that when homozygous for the transgene develop a severe, adult-onset neuromuscular disorder. This mutation is likely the result of the insertional inactivation of an endogenous gene by the transgene integration. The mutant mice have a gait abnormality with stiffened and/or splayed hind legs, and adopt a hunched posture with some exhibiting kyphosis of the thoracic spine. These symptoms progress gradually to severe motor dysfunction. Pathologic changes were found in skeletal muscle and peripheral nerve of the mutant animals. In young mice the muscles from both upper and lower extremities show necrosis and phagocytosis. In older mice, regeneration with muscle fiber splitting, internally located nuclei, and variable fiber size are conspicuous features. Interactions between Schwann cells and axons also appear disrupted in these animals. Although many peripheral axons are well myelinated, the nerve and nerve roots contain very large bundles of juxtaposed, bare axons, reminiscent of Schwann cell-axon interactions in early development. Within these bundles there are axons large enough to be myelinated. The relationship between the pathologic changes in the muscles and nerves is not clear. The phenotypic abnormalities of these animals resemble those that occur in the spontaneous mouse mutants dystrophia muscularis and myodystrophy. Nevertheless, the chromosomal position of the transgene integration site, which was mapped by fluorescent in situ hybridization to chromosome 11, indicates that this disorder represents a new neuromuscular mutation.

Back to top

In this issue

The Journal of Neuroscience: 14 (1)
Journal of Neuroscience
Vol. 14, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Autosomal recessive neuromuscular disorder in a transgenic line of mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Autosomal recessive neuromuscular disorder in a transgenic line of mice
D Kelly, K Chancellor, A Milatovich, U Francke, K Suzuki, B Popko
Journal of Neuroscience 1 January 1994, 14 (1) 198-207; DOI: 10.1523/JNEUROSCI.14-01-00198.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Autosomal recessive neuromuscular disorder in a transgenic line of mice
D Kelly, K Chancellor, A Milatovich, U Francke, K Suzuki, B Popko
Journal of Neuroscience 1 January 1994, 14 (1) 198-207; DOI: 10.1523/JNEUROSCI.14-01-00198.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.