Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals

H Baier and S Korsching
Journal of Neuroscience 1 January 1994, 14 (1) 219-230; https://doi.org/10.1523/JNEUROSCI.14-01-00219.1994
H Baier
Max-Planck-Institut fur Entwicklungsbiologie, Abteilung Physikalische Biologie, Tubingen, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Korsching
Max-Planck-Institut fur Entwicklungsbiologie, Abteilung Physikalische Biologie, Tubingen, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glomeruli are anatomical and possibly functional modules in the vertebrate olfactory bulb. We investigated the spatial arrangement of glomeruli in the olfactory bulbs of adult zebrafish (Brachydanio rerio). A solution of the lipophilic tracer Dil was injected into the nasal cavities. Axons of sensory neurons projecting from the olfactory epithelium into the bulb were traced anterogradely, thus labeling the whole population of glomeruli. The glomerular distribution was analyzed in detail by confocal laser-scanning microscopy. We find that a typical olfactory bulb contains a small number of about 80 glomeruli that have a stereotyped configuration in all animals investigated. All glomeruli exhibit bilateral symmetry. Twenty-two single glomeruli could be identified from animal to animal by their characteristic position and morphology. The remaining glomeruli either are embedded in glomerular plexus and therefore cannot be delineated reliably, or belong to a densely clustered subpopulation of on average 49 glomeruli in the dorsal olfactory bulb. No sexually dimorphic glomeruli were identified. To test whether glomerular constancy is specific for the zebrafish, we performed similar tracing experiments in the goldfish and found several indications for a similar invariance of glomeruli in this species. The remarkable stereotypy of this pattern is reminiscent of the insect olfactory system and has been demonstrated here for the first time in a vertebrate. It will now be possible to examine whether these identifiable glomeruli are functionally specialized in terms of odor processing. If so, zebrafish may emerge as a tractable model system for studies on olfactory coding.

Back to top

In this issue

The Journal of Neuroscience: 14 (1)
Journal of Neuroscience
Vol. 14, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals
H Baier, S Korsching
Journal of Neuroscience 1 January 1994, 14 (1) 219-230; DOI: 10.1523/JNEUROSCI.14-01-00219.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals
H Baier, S Korsching
Journal of Neuroscience 1 January 1994, 14 (1) 219-230; DOI: 10.1523/JNEUROSCI.14-01-00219.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.