Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Segmental patterning of rat and chicken sympathetic preganglionic neurons: correlation between soma position and axon projection pathway

CJ Forehand, EB Ezerman, E Rubin and JC Glover
Journal of Neuroscience 1 January 1994, 14 (1) 231-241; https://doi.org/10.1523/JNEUROSCI.14-01-00231.1994
CJ Forehand
Department of Anatomy and Neurobiology, University of Vermont, Burlington 05405.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EB Ezerman
Department of Anatomy and Neurobiology, University of Vermont, Burlington 05405.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Rubin
Department of Anatomy and Neurobiology, University of Vermont, Burlington 05405.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Glover
Department of Anatomy and Neurobiology, University of Vermont, Burlington 05405.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The segmental organization of midthoracic rat and chicken sympathetic preganglionic neurons was examined by retrograde labeling in vivo and in vitro. The results demonstrate that individual sympathetic preganglionic neurons project only rostrally or caudally within the sympathetic chain, even though the spinal segment in which they reside provides innervation to both rostral and caudal ganglia. In addition, there is both a segmental and an intrasegmental pattern in the thoracic sympathetic column, in which the position of preganglionic neurons is related to the direction they project in the sympathetic chain. Thoracic sympathetic preganglionic neurons are organized into discrete segmental units, each of which exhibits an internal rostrocaudal polarity with respect to the direction of axon projection in the sympathetic chain. The rostrocaudal bias of this internal polarity is graded from segment to segment along the longitudinal axis. Since there is minimal overlap between thoracic segments, the transition from one segment to another entails a sharp change in the pathway choice of the preganglionic neurons. The organization of the preganglionic projections thus includes (1) segmental periodicity, (2) intrasegmental gradients of neuronal identity, and (3) an axial gradient of segment identity. The significance of these findings is twofold. First, they suggest a functional organization that may be related to the specificity of sympathetic reflex action. Second, they reveal a cellular organization that suggests an underlying segmental pattern in the developing spinal cord.

Back to top

In this issue

The Journal of Neuroscience: 14 (1)
Journal of Neuroscience
Vol. 14, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Segmental patterning of rat and chicken sympathetic preganglionic neurons: correlation between soma position and axon projection pathway
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Segmental patterning of rat and chicken sympathetic preganglionic neurons: correlation between soma position and axon projection pathway
CJ Forehand, EB Ezerman, E Rubin, JC Glover
Journal of Neuroscience 1 January 1994, 14 (1) 231-241; DOI: 10.1523/JNEUROSCI.14-01-00231.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Segmental patterning of rat and chicken sympathetic preganglionic neurons: correlation between soma position and axon projection pathway
CJ Forehand, EB Ezerman, E Rubin, JC Glover
Journal of Neuroscience 1 January 1994, 14 (1) 231-241; DOI: 10.1523/JNEUROSCI.14-01-00231.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.