Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study

PA Garris and RM Wightman
Journal of Neuroscience 1 January 1994, 14 (1) 442-450; https://doi.org/10.1523/JNEUROSCI.14-01-00442.1994
PA Garris
Department of Chemistry, University of North Carolina at Chapel Hill 27599–3290.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RM Wightman
Department of Chemistry, University of North Carolina at Chapel Hill 27599–3290.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The regulation of extracellular dopamine (DA) concentrations was examined and compared in vivo in four projection fields of mesotelencephalic dopaminergic neurons with fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Transient electrical stimulation of ascending DA fibers in a near physiological range of frequencies (10–20 Hz) elicited similar levels of extracellular DA in the medial prefrontal cortex (MPFC), basal lateral amygdaloid nucleus (BAN), caudate-putamen (CP), and nucleus accumbens (NAc) despite the documented 90-fold disparity in DA tissue levels and terminal density. However, marked differences were observed in the dynamics and overall frequency dependence of the evoked synaptic overflow of DA. These differences are due to the significantly different rates of release and uptake found in each of the four regions. For example, rate constants for the release of the four regions. For example, rate constants for the release and uptake of DA were similar in the MPFC and BAN but approximately 8 and 50 times less, respectively, than that in the CP and NAc. When the parameters were normalized to endogenous DA tissue content, a unique picture emerged: compared to all other regions, relative release was 10-fold greater in the MPFC while relative uptake was at least 10 times less in the BAN. The results further differentiate the functional characteristics of mesotelencephalic dopaminergic systems and demonstrate the regiospecific nature of DA neural transmission in the brain. In addition, the regulation of extracellular DA levels in the MPFC and BAN is suitable for the “long- range” transfer of chemical information in the brain and is consistent with a hypothesis of extrasynaptic neurotransmission.

Back to top

In this issue

The Journal of Neuroscience: 14 (1)
Journal of Neuroscience
Vol. 14, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study
PA Garris, RM Wightman
Journal of Neuroscience 1 January 1994, 14 (1) 442-450; DOI: 10.1523/JNEUROSCI.14-01-00442.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study
PA Garris, RM Wightman
Journal of Neuroscience 1 January 1994, 14 (1) 442-450; DOI: 10.1523/JNEUROSCI.14-01-00442.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.