Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Death of developing septal cholinergic neurons following NGF withdrawal in vitro: protection by protein synthesis inhibition

CN Svendsen, JN Kew, K Staley and MV Sofroniew
Journal of Neuroscience 1 January 1994, 14 (1) 75-87; https://doi.org/10.1523/JNEUROSCI.14-01-00075.1994
CN Svendsen
Department of Anatomy, University of Cambridge, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JN Kew
Department of Anatomy, University of Cambridge, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Staley
Department of Anatomy, University of Cambridge, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MV Sofroniew
Department of Anatomy, University of Cambridge, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fetal septal neurons were grown in vitro under glass coverslips. This sandwich culture method significantly increased general neuronal survival, reduced glial proliferation, and permitted the removal of serum from the growth medium after 5 d in vitro. Thereafter, a simple, and completely defined, medium was used, and the effects of NGF, NGF withdrawal, and protein synthesis inhibition were examined on septal cholinergic neurons. NGF added to septal cultures at the time of plating resulted in a threefold increase in the number of cholinergic neurons seen at 14 d in vitro but had no effect on the survival of non- cholinergic cells. Cholinergic neurons identified by staining for AChE, ChAT, and p75NGFR could be maintained in serum-free, NGF-supplemented medium for over 40 d. When NGF was removed and NGF antibodies added to 14-d-old cultures, less than 30% of cholinergic neurons survived a further 4 d, but when NGF was similarly withdrawn from 35-d-old cultures, over 75% of cholinergic neurons survived. Reapplication of NGF after 3 but not after 12 or more hours of NGF withdrawal from 14-d- old cultures prevented the death of most cholinergic neurons. When NGF was withdrawn from 14-d-old cultures in the presence of the protein synthesis inhibitor cycloheximide, over 75% of the cholinergic neurons survived. These findings suggest that septal cholinergic neurons are dependent on NGF for survival only during a critical period of development and that growth factor-regulated developmental cell death may occur in CNS neurons by activation of programmed cell death requiring protein synthesis.

Back to top

In this issue

The Journal of Neuroscience: 14 (1)
Journal of Neuroscience
Vol. 14, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Death of developing septal cholinergic neurons following NGF withdrawal in vitro: protection by protein synthesis inhibition
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Death of developing septal cholinergic neurons following NGF withdrawal in vitro: protection by protein synthesis inhibition
CN Svendsen, JN Kew, K Staley, MV Sofroniew
Journal of Neuroscience 1 January 1994, 14 (1) 75-87; DOI: 10.1523/JNEUROSCI.14-01-00075.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Death of developing septal cholinergic neurons following NGF withdrawal in vitro: protection by protein synthesis inhibition
CN Svendsen, JN Kew, K Staley, MV Sofroniew
Journal of Neuroscience 1 January 1994, 14 (1) 75-87; DOI: 10.1523/JNEUROSCI.14-01-00075.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.