Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium

KR Delaney and DW Tank
Journal of Neuroscience 1 October 1994, 14 (10) 5885-5902; DOI: https://doi.org/10.1523/JNEUROSCI.14-10-05885.1994
KR Delaney
Biological Computation Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DW Tank
Biological Computation Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We simultaneously measured presynaptic free calcium ion concentration ([Ca2+]i) and synaptic strength at the crayfish claw opener neuromuscular junction (nmj) under a variety of experimental conditions. Our experiments were designed both to test the hypothesis that elevated [Ca2+]i is necessary and sufficient for the induction of a form of synaptic enhancement that persists for several seconds after tetanic stimulation--augmentation--and to determine the quantitative relationship between elevated [Ca2+]i and this enhancement. Action potential trains increased [Ca2+]i and enhanced transmission. During the decay phase of synaptic enhancement known as augmentation (time constant of decay approximately 7 sec at 20 degrees C with < 200 microM fura-2 in terminals), [Ca2+]i was elevated 700 nM or less above rest and an essentially linear relationship between [Ca2+]i and enhancement was observed. Introduction of exogenous Ca2+ buffers into the presynaptic terminal slowed the buildup and recovery kinetics of both [Ca2+]i and the component of synaptic enhancement corresponding to augmentation. The slope of the relationship relating delta [Ca2+]i to augmentation was not changed. The time course of augmentation and recovery of [Ca2+]i remained correlated as the temperature of the preparation was changed from about 10 degrees C to 20 degrees C, but the quantitative relationship of enhancement to [Ca2+]i was increased more than two- to threefold. During moderate frequency trains of action potentials, a slowly developing component of the total synaptic enhancement was approximately linearly related to residual [Ca2+]i measured with fura-2. The quantitative relationship between [Ca2+]i and this component of synaptic enhancement during trains was the same as that during synaptic augmentation after trains.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 14 (10)
Journal of Neuroscience
Vol. 14, Issue 10
1 Oct 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium
KR Delaney, DW Tank
Journal of Neuroscience 1 October 1994, 14 (10) 5885-5902; DOI: 10.1523/JNEUROSCI.14-10-05885.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium
KR Delaney, DW Tank
Journal of Neuroscience 1 October 1994, 14 (10) 5885-5902; DOI: 10.1523/JNEUROSCI.14-10-05885.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.