Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The astrocytic response to afferent activity blockade in chick nucleus magnocellularis is independent of synaptic activation, age, and neuronal survival

KS Canady, RL Hyson and EW Rubel
Journal of Neuroscience 1 October 1994, 14 (10) 5973-5985; DOI: https://doi.org/10.1523/JNEUROSCI.14-10-05973.1994
KS Canady
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RL Hyson
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EW Rubel
Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Astrocytes in nucleus magnocellularis (NM) of the chick respond to afferent activity blockade with increased immunoreactivity for glial fibrillary acidic protein (GFAP). NM neurons respond to the same manipulations with reduced protein synthesis, ribosomal dissociation, and subsequent death of a subset of these neurons. In the present study, we sought to evaluate the relationship between these neuronal and glial responses and to determine if similar activity-dependent mechanisms mediate them. We first examined the anatomical relationship between NM neurons and astrocytic processes by electron microscopy and GFAP immunostaining. Both methods showed that NM neurons deprived of activity for 6 hr were apposed by more glial processes than active NM neurons. However, we found no preferential positioning of GFAP- immunoreactive processes near neurons of the dying or surviving populations, and there were no differences in glial process apposition to dying versus surviving neurons at the EM level. To determine whether the astrocytic response is similar to the neuronal response in age dependence, GFAP immunoreactivity was analyzed in adult chickens following unilateral afferent activity blockade. Unlike the neuronal response to activity blockade, the astrocytic response is equally strong in adult animals. These results imply an independence of the neuronal and astrocytic responses to activity blockade, raising the possibility that these two cell types may be responding to different activity-related signals. This possibility was tested using an in vitro slice preparation. Unilateral stimulation of NM was provided in three ways: orthodromically, antidromically, and orthodromically in a low- calcium medium. The regulation of astrocytic GFAP immunoreactivity by these manipulations of activity was then analyzed. The results of these experiments show that, unlike neuronal protein synthesis, astrocytic GFAP immunoreactivity can be suppressed by either presynaptic or postsynaptic neuronal activity. Therefore, the astrocytes and neurons are regulated by different activity-dependent signals and, by the present measures, their responses to activity blockade appear independent of one another.

Back to top

In this issue

The Journal of Neuroscience: 14 (10)
Journal of Neuroscience
Vol. 14, Issue 10
1 Oct 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The astrocytic response to afferent activity blockade in chick nucleus magnocellularis is independent of synaptic activation, age, and neuronal survival
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The astrocytic response to afferent activity blockade in chick nucleus magnocellularis is independent of synaptic activation, age, and neuronal survival
KS Canady, RL Hyson, EW Rubel
Journal of Neuroscience 1 October 1994, 14 (10) 5973-5985; DOI: 10.1523/JNEUROSCI.14-10-05973.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The astrocytic response to afferent activity blockade in chick nucleus magnocellularis is independent of synaptic activation, age, and neuronal survival
KS Canady, RL Hyson, EW Rubel
Journal of Neuroscience 1 October 1994, 14 (10) 5973-5985; DOI: 10.1523/JNEUROSCI.14-10-05973.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.