Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain

PA Garris, EL Ciolkowski, P Pastore and RM Wightman
Journal of Neuroscience 1 October 1994, 14 (10) 6084-6093; DOI: https://doi.org/10.1523/JNEUROSCI.14-10-06084.1994
PA Garris
Department of Chemistry, University of North Carolina, Chapel Hill 27599–2390.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EL Ciolkowski
Department of Chemistry, University of North Carolina, Chapel Hill 27599–2390.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Pastore
Department of Chemistry, University of North Carolina, Chapel Hill 27599–2390.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RM Wightman
Department of Chemistry, University of North Carolina, Chapel Hill 27599–2390.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Synaptic release of dopamine in the nucleus accumbens of the intact rat brain elicited by a single electrical impulse applied to ascending dopaminergic fibers results in extracellular concentrations sufficient to bind the known dopamine receptors. The dopamine concentration observed after four rapid, sequential pulses is exactly four times greater and is unaffected by pharmacological antagonism of dopamine uptake and receptor sites at supramaximal concentrations. Thus, dopamine efflux from the synaptic cleft is not restricted by binding to intrasynaptic proteins on the time scale of the measurements (50–100 msec). The extracellular concentration, as a result of a single stimulus pulse, is 0.25 microM and is rapidly removed by extrasynaptic uptake. This maximal, transient concentration of dopamine is 60 times higher than steady-state concentrations reported previously using dialysis techniques, illustrating that dopamine extracellular concentrations are spatially and temporally heterogenous. In contrast to ACh transmission at the neuromuscular junction, the dopamine synapse in the telencephalon is designed for the effective efflux of dopamine from the synaptic cleft to the extrasynaptic compartment during neurotransmission.

Back to top

In this issue

The Journal of Neuroscience: 14 (10)
Journal of Neuroscience
Vol. 14, Issue 10
1 Oct 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain
PA Garris, EL Ciolkowski, P Pastore, RM Wightman
Journal of Neuroscience 1 October 1994, 14 (10) 6084-6093; DOI: 10.1523/JNEUROSCI.14-10-06084.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain
PA Garris, EL Ciolkowski, P Pastore, RM Wightman
Journal of Neuroscience 1 October 1994, 14 (10) 6084-6093; DOI: 10.1523/JNEUROSCI.14-10-06084.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.