Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The potency of mu-opioid hyperpolarization of hypothalamic arcuate neurons is rapidly attenuated by 17 beta-estradiol

AH Lagrange, OK Ronnekleiv and MJ Kelly
Journal of Neuroscience 1 October 1994, 14 (10) 6196-6204; DOI: https://doi.org/10.1523/JNEUROSCI.14-10-06196.1994
AH Lagrange
Department of Physiology, Oregon Health Sciences University, Portland 97201–3098.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
OK Ronnekleiv
Department of Physiology, Oregon Health Sciences University, Portland 97201–3098.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MJ Kelly
Department of Physiology, Oregon Health Sciences University, Portland 97201–3098.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The mu-opioid agonist DAMGO (Tyr-D-Ala-Gly-MePhe-Gly-ol) hyperpolarizes the majority of arcuate hypothalamic (ARC) neurons by opening an inwardly rectifying potassium conductance. The EC50 for the DAMGO- induced hyperpolarization was 60 +/- 3 nM in ARC neurons from ovariectomized guinea pigs. Superfusion of 17 beta-estradiol (E2; 100 nM) for 20 min in vitro resulted in a significant decrease in DAMGO potency (EC50 = 212 +/- 16 nM) in 40% of the neurons that were tested. This rapid effect of E2 on the mu-opioid response was not mimicked by the biologically inactive isomer 17 alpha-estradiol. Multiple concentrations of E2 were used to generate an E2 concentration-response curve, with an EC50 of 9 nM and a maximal increase in the DAMGO EX50 of 411% of controls. The membrane properties and firing rate of E2- sensitive and E2-insensitive neurons were not different. Streptavidin- FITC labeling did not reveal any significant morphological differences between the groups, but a higher number of E2-sensitive cells was found in the lateral ARC and cell-poor zone. Moreover, immunocytochemical staining of the recorded cells revealed that beta-endorphin neurons were among those sensitive to E2. Therefore, E2 could increase beta- endorphin release by decreasing the potency of beta-endorphinergic autoinhibition, thus increasing the tonic opioid inhibition of E2- insensitive cells. Furthermore, the diffuse projections of hypothalamic beta-endorphin neurons would allow E2 to alter processes throughout the brain, as well as having local effects in the hypothalamus.

Back to top

In this issue

The Journal of Neuroscience: 14 (10)
Journal of Neuroscience
Vol. 14, Issue 10
1 Oct 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The potency of mu-opioid hyperpolarization of hypothalamic arcuate neurons is rapidly attenuated by 17 beta-estradiol
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The potency of mu-opioid hyperpolarization of hypothalamic arcuate neurons is rapidly attenuated by 17 beta-estradiol
AH Lagrange, OK Ronnekleiv, MJ Kelly
Journal of Neuroscience 1 October 1994, 14 (10) 6196-6204; DOI: 10.1523/JNEUROSCI.14-10-06196.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The potency of mu-opioid hyperpolarization of hypothalamic arcuate neurons is rapidly attenuated by 17 beta-estradiol
AH Lagrange, OK Ronnekleiv, MJ Kelly
Journal of Neuroscience 1 October 1994, 14 (10) 6196-6204; DOI: 10.1523/JNEUROSCI.14-10-06196.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.