Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord

MJ Wall and N Dale
Journal of Neuroscience 1 October 1994, 14 (10) 6248-6255; DOI: https://doi.org/10.1523/JNEUROSCI.14-10-06248.1994
MJ Wall
School of Biological Sciences, Bristol University, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Dale
School of Biological Sciences, Bristol University, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Activation of GABAB receptors in the Xenopus embryo, a simple vertebrate, causes presynaptic inhibition of transmitter release from glycinergic spinal neurons and an increase in action potential threshold. To investigate the underlying mechanisms of GABAB receptor action, we have made whole-cell voltage-clamp recordings from acutely isolated Xenopus embryo spinal neurons. The GABAB receptor agonist baclofen caused a reversible reduction in the amplitude of Ca2+ currents. This reduction of Ca2+ currents appeared to be voltage dependent as it was removed at very positive potentials. Since the specific GABAB antagonists CGP35348, phaclofen, and 2-hydroxysaclofen all blocked the reduction in Ca2+ currents, we concluded that the modulation of the Ca2+ current was mediated by GABAB receptors. We have investigated the pharmacological identity of the Ca2+ current modulated by baclofen using the selective blocker omega-conotoxin, fraction GVIA (omega-CgTX). omega-CgTX selectively blocked voltage-gated Ca2+ currents without affecting the voltage-gated Na+ current. omega-CgTX substantially occluded the action of baclofen, suggesting that GABAB receptors modulate an omega-CgTX-sensitive Ca2+ current. Since GABAB receptors mediate presynaptic inhibition, we have studied the involvement of the omega-CgTX-sensitive Ca2+ current in synaptic transmission in the intact spinal cord. Inhibitory interneuron axons were stimulated to evoke monosynaptic IPSPs in motoneurons, and recorded intracellularly. Since omega-CgTX blocked inhibitory transmission, we concluded that the omega-CgTX-sensitive Ca2+ current plays an essential role in transmitter release. If modulation of this current were to occur in nerve terminals, it could contribute to the GABAB receptor-mediated presynaptic inhibition of transmitter release.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 14 (10)
Journal of Neuroscience
Vol. 14, Issue 10
1 Oct 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord
MJ Wall, N Dale
Journal of Neuroscience 1 October 1994, 14 (10) 6248-6255; DOI: 10.1523/JNEUROSCI.14-10-06248.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord
MJ Wall, N Dale
Journal of Neuroscience 1 October 1994, 14 (10) 6248-6255; DOI: 10.1523/JNEUROSCI.14-10-06248.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.