Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Territorial organization of direction-selective ganglion cells in rabbit retina

DI Vaney
Journal of Neuroscience 1 November 1994, 14 (11) 6301-6316; https://doi.org/10.1523/JNEUROSCI.14-11-06301.1994
DI Vaney
Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The On-Off direction-selective (DS) ganglion cells in the rabbit retina comprise four discrete subtypes that orthogonally code the direction of image motion. This study examined the dendritic relationships between different subtypes of On-Off DS cells, which were identified by their distinctive type 1 bistratified (BiS1) morphology following the intracellular injection of a biotinylated tracer or Lucifer yellow under direct microscopic control. The dendrites of BiS1 cells that had closely spaced somata, which presumably comprised subtypes of On-Off DS cells with different preferred directions, were not randomly superimposed but were fasciculated into loose bundles. By contrast, tracer coupling revealed that neighboring On-Off DS cells of one subtype were highly territorial, providing complete coverage of the retina with minimal overlap. This mirrors, on a larger scale, the territorial organization within the dendritic tree of individual DS cells, suggesting that similar interactions shape both the branching pattern and the spatial extent of these neurons. Moreover, the dendrites at the edge of the dendritic field often formed tip-to-shaft or tip-to-tip contacts with dendrites from coupled cells, thus appearing to form closed dendritic loops that may be equivalent to those found within the dendritic tree. Consequently, the dendrites of one subtype are distributed uniformly and economically across the retina. The resulting plexus forms a strikingly regular scaffold on which the presynaptic interneurons generate direction selectivity.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Territorial organization of direction-selective ganglion cells in rabbit retina
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Territorial organization of direction-selective ganglion cells in rabbit retina
DI Vaney
Journal of Neuroscience 1 November 1994, 14 (11) 6301-6316; DOI: 10.1523/JNEUROSCI.14-11-06301.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Territorial organization of direction-selective ganglion cells in rabbit retina
DI Vaney
Journal of Neuroscience 1 November 1994, 14 (11) 6301-6316; DOI: 10.1523/JNEUROSCI.14-11-06301.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.