Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX

JR Wrathall, D Choiniere and YD Teng
Journal of Neuroscience 1 November 1994, 14 (11) 6598-6607; DOI: https://doi.org/10.1523/JNEUROSCI.14-11-06598.1994
JR Wrathall
Department of Cell Biology, Georgetown University, Washington, D.C. 20007.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Choiniere
Department of Cell Biology, Georgetown University, Washington, D.C. 20007.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
YD Teng
Department of Cell Biology, Georgetown University, Washington, D.C. 20007.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Initial studies on the role of glutamate receptors in traumatic spinal cord injury (SCI) implicated the NMDA subclass of ionotropic glutamate receptors in contributing to functional deficits. Recently we obtained evidence suggesting that non-NMDA ionotropic receptors may participate in producing a portion of the behavioral impairment after SCI. To test this hypothesis we have conducted a dose-response experiment, focally injecting 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX; 1.5, 5, or 15 nmol), a highly selective antagonist of alpha-amino-3- hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors, or vehicle alone, into the injury site beginning at 15 min after a standardized contusive SCI. Behavioral tests of hindlimb reflex and coordinated sensorimotor function were performed 1 d after injury and weekly thereafter. At 4 weeks, spinal cord tissue was examined using quantitative histopathological and immunocytochemical techniques. We found a dose-dependent reduction in tissue loss at the thoracic injury site, with greater residual amounts of both gray matter and myelinated white matter. The maximum dose (15 nmol) significantly reduced the average length of the lesions and doubled the area of residual white matter at the epicenter. Serotonin immunoreactivity caudal to the lesion, used as a marker for descending motor control axons, was also increased in a dose-related manner and nearly tripled with the highest dose of NBQX as compared to controls. Most importantly, the reduced tissue loss in NBQX-treated groups was correlated with reduced functional deficits. There was a dose-dependent enhancement of speed and degree of recovery of both reflex and coordinated hindlimb motor activity, and reduction in the time required for establishing a reflex bladder. The long-term functional deficits at 4 weeks after SCI were reduced in a dose-related manner. Further, regression analyses demonstrated a significant correlation between the increase in amount of residual tissue and improvement in hindlimb function. Our results suggest that in this type of incomplete contusive SCI, a large and functionally important proportion of the tissue loss appears to be due to secondary injury mediated by local AMPA/kainate receptors.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX
JR Wrathall, D Choiniere, YD Teng
Journal of Neuroscience 1 November 1994, 14 (11) 6598-6607; DOI: 10.1523/JNEUROSCI.14-11-06598.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX
JR Wrathall, D Choiniere, YD Teng
Journal of Neuroscience 1 November 1994, 14 (11) 6598-6607; DOI: 10.1523/JNEUROSCI.14-11-06598.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.