Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons

M Armstrong-James, ME Diamond and FF Ebner
Journal of Neuroscience 1 November 1994, 14 (11) 6978-6991; DOI: https://doi.org/10.1523/JNEUROSCI.14-11-06978.1994
M Armstrong-James
Department of Physiology, Queen Mary Westfield College, London University, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ME Diamond
Department of Physiology, Queen Mary Westfield College, London University, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
FF Ebner
Department of Physiology, Queen Mary Westfield College, London University, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effect of innocuously biasing the flow of sensory activity from the whiskers for periods of 3–30 d in awake, behaving adult rats on the receptive field organization of rat SI barrel cortex neurons was studied. One pair of adjacent whiskers, D2 and either D1 or D3, remained intact unilaterally (whisker pairing), all others being trimmed throughout the period of altered sensation. Receptive fields of single cells in the contralateral D2 barrel were analyzed under urethane anesthesia by peristimulus time histogram (PSTH) and latency histogram analysis after 3, 7–10, and 30 d of pairing and compared with controls, testing all whiskers cut to the same length. Response magnitudes to surround receptive field in-row whiskers D1 and D3 were not significantly different for control animals. The same was found for surround in-arc whiskers C2 and E2. However, after 3 d of whisker pairing a profound bias occurred in response to the paired D-row surround whisker relative to the opposite trimmed surround D-row whisker and to the C2 and E2 whiskers. This bias increased with the duration of pairing, regardless of which surround whisker (D1 or D3) was paired with D2. For all three periods of pairing the mean response to the paired surround whisker was increased relative to controls, but peaked at 7–10 d. Response to the principal center-receptive (D2) whisker was increased for the 3 and 7–10 d groups and then decreased at 30 d. Responses to trimmed arc surround whiskers (C2 and E2) were decreased in proportion to the duration of changed experience. Analysis of PSTH data showed that earliest discharges (5–10 msec poststimulus) to the D2 whisker increased progressively in magnitude with duration of pairing. For the paired surround whisker similar early discharges newly appeared after 30 d of pairing. At 3 and 7–10 d of pairing, increases in response to paired whiskers and decreases to cut surround whiskers were confined to late portions of the PSTH (10–100 msec poststimulus). Changes at 3–10 d can be attributed to alterations in intracortical synaptic relay between barrels. Longer-term changes in response to both paired whisker inputs (30 d) largely appear to reflect increases in thalamocortical synaptic efficacy. Our findings suggest that novel innocuous somatosensory experiences produce changes in the receptive field configuration of cortical cells that are consistent with Hebbian theories of experience-dependent potentiation and weakening of synaptic efficacy within SI neocortical circuitry, for correlated and uncorrelated sensory inputs, respectively.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons
M Armstrong-James, ME Diamond, FF Ebner
Journal of Neuroscience 1 November 1994, 14 (11) 6978-6991; DOI: 10.1523/JNEUROSCI.14-11-06978.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons
M Armstrong-James, ME Diamond, FF Ebner
Journal of Neuroscience 1 November 1994, 14 (11) 6978-6991; DOI: 10.1523/JNEUROSCI.14-11-06978.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.