Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline [published erratum appears in J Neurosci 1995 Mar;15(3):following table of contents]

P Godement, LC Wang and CA Mason
Journal of Neuroscience 1 November 1994, 14 (11) 7024-7039; https://doi.org/10.1523/JNEUROSCI.14-11-07024.1994
P Godement
Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LC Wang
Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Mason
Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To study how retinal ganglion cell axons diverge in the optic chiasm, the behavior of dye-labeled fibers was monitored in real time with video microscopy in an isolated preparation of embryonic mouse brain, with a focus on embryonic day 15–16. These real-time studies have revealed the dynamics of the growth of individual retinal axons, especially the tempo of extension and growth cone behaviors during divergence in the chiasm, a model for “decision” regions in developing pathways. Within the chiasm, retinal growth cones extend by saltatory growth, consisting of bursts of rapid advance alternating with pauses in extension. During pauses, growth cone appendages remain motile, and develop asymmetries prior to a change in the axis of growth. In a zone straddling the midline, retinal fibers, irrespective of destination, display long pauses for up to several hours, making small advances and retractions with no net extension. While crossed fibers ultimately progress through the midline, uncrossed fibers from inferior temporal retina develop wide-ranging branched growth cones, and then turn back to the ipsilateral side. Turns are effected by the selective retraction or micropruning of asymmetric foci of motile activity, and by the transformation of a backward-directed filopodium into a new growth cone. The behavior of retinal axons at the midline supports the hypothesis that this locus contains cues important for retinal axon divergence. Moreover, the observations of growth cone kinetics in the chiasm elucidate which growth cone forms seen in static preparations mediate growth cone turning, and suggest a model of axon navigation in decision regions in the intact nervous system.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline [published erratum appears in J Neurosci 1995 Mar;15(3):following table of contents]
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline [published erratum appears in J Neurosci 1995 Mar;15(3):following table of contents]
P Godement, LC Wang, CA Mason
Journal of Neuroscience 1 November 1994, 14 (11) 7024-7039; DOI: 10.1523/JNEUROSCI.14-11-07024.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline [published erratum appears in J Neurosci 1995 Mar;15(3):following table of contents]
P Godement, LC Wang, CA Mason
Journal of Neuroscience 1 November 1994, 14 (11) 7024-7039; DOI: 10.1523/JNEUROSCI.14-11-07024.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.