Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat

B Kocsis and RP Vertes
Journal of Neuroscience 1 November 1994, 14 (11) 7040-7052; https://doi.org/10.1523/JNEUROSCI.14-11-07040.1994
B Kocsis
Center for Complex Systems, Florida Atlantic University, Boca Raton 33431.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RP Vertes
Center for Complex Systems, Florida Atlantic University, Boca Raton 33431.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We examined the activity of single cells of the supramammillary nucleus (SUM), the mammillary body (MB), and adjacent regions of the diencephalon with respect to the hippocampal electroencephalogram (EEG) in urethane-anesthetized rats. Twenty-nine of 170 cells were found to discharge synchronously with the theta rhythm of the hippocampus (theta- related neurons). All of the 29 theta-related cells were localized to the SUM or MB. A subset of theta-related cells of SUM and MB discharged in short-duration bursts comparable to the pyramidal complex spike cells of the hippocampus. In contrast to hippocampal complex spikes, however, which predominantly exhibit this mode of firing during non- theta states, the burst firing of SUM/MB cells was strongly correlated with the theta rhythm. The proportion of bursting neurons was higher in MB than in SUM. Using partial coherence analysis, we examined the relationship between SUM/MB theta-related cells and the two generators of theta of the dorsal hippocampus. The theta-related cells of MB showed a stronger correlation with “CA1” than with “dentate” theta, whereas no such asymmetry was found in the relationship between neuronal firing of SUM cells and the two generators of theta in the hippocampus. The foregoing suggests that the theta-related cells of MB are driven by descending projections from the hippocampal formation (CA1), whereas those of the SUM are not. The SUM and MB are intimately connected with the hippocampal formation--the SUM mainly via ascending projections to the dentate gyrus, and the MB via direct descending projections from the subiculum. Theta-related SUM/MB cells may be directly involved in the generation of theta and/or the transfer of theta rhythmicity to various parts of the limbic system and forebrain.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat
B Kocsis, RP Vertes
Journal of Neuroscience 1 November 1994, 14 (11) 7040-7052; DOI: 10.1523/JNEUROSCI.14-11-07040.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat
B Kocsis, RP Vertes
Journal of Neuroscience 1 November 1994, 14 (11) 7040-7052; DOI: 10.1523/JNEUROSCI.14-11-07040.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.