Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus

O Herreras, C Largo, JM Ibarz, GG Somjen and R Martin del Rio
Journal of Neuroscience 1 November 1994, 14 (11) 7087-7098; DOI: https://doi.org/10.1523/JNEUROSCI.14-11-07087.1994
O Herreras
Departamento Investigacion, Hospital Ramon y Cajal, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Largo
Departamento Investigacion, Hospital Ramon y Cajal, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JM Ibarz
Departamento Investigacion, Hospital Ramon y Cajal, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GG Somjen
Departamento Investigacion, Hospital Ramon y Cajal, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Martin del Rio
Departamento Investigacion, Hospital Ramon y Cajal, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To detect what initiates spreading depression (SD), the early prodromal events were investigated in hippocampal CA1 of urethane-anesthetized rats. SD was provoked by microdialysis or focal microinjection of high- K+ solution. Extracellular DC potentials and extracellular potassium concentration ([K+]o) were recorded, and spontaneous and evoked potentials analyzed for current source-density (CSD). In the front of an approaching SD wave, several seconds before the onset of the typical sustained negative potential shift (delta Vo) and the increased [K+]o, fast electrical activity was detected. This consisted initially of small rhythmic (60–70 Hz) sawtooth wavelets, which then gave way to a shower of population spikes (PSs) of identical frequency. Prodromal wavelets and PSs were synchronized over considerable distances in the tissue. Sawtooth wavelets were identified as pacemakers of the prodromal PS burst. Simultaneous recording at three depths revealed that the spontaneous prodromal PSs occurred exactly in phase in dendrites and somata whereas synaptically transmitted PSs arose first in the proximal dendrites and were conducted from there into the soma membrane. During a spike burst, stratum (st.) pyramidale served as current sink, while in the proximal sublayer of st. radiatum spike- sinks gave way to spike sources that grew larger as the sinks in st. pyramidale began to subside. Blocking synaptic transmission did not abolish the prodromal spike burst, yet repetitive orthodromic activation inhibited it without altering the subsequent SD waveform. Complex changes in cell excitability were detected even before fast spontaneous activities. We concluded that, in the initial evolution of SD, changes in neuron function precede the regenerating depolarization by several seconds. We propose that the opening of normally closed electric junctions among neurons can best explain the long-distance synchronization and the flow current that occurs in the leading edge of a propagating wave of SD.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus
O Herreras, C Largo, JM Ibarz, GG Somjen, R Martin del Rio
Journal of Neuroscience 1 November 1994, 14 (11) 7087-7098; DOI: 10.1523/JNEUROSCI.14-11-07087.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus
O Herreras, C Largo, JM Ibarz, GG Somjen, R Martin del Rio
Journal of Neuroscience 1 November 1994, 14 (11) 7087-7098; DOI: 10.1523/JNEUROSCI.14-11-07087.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.