Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N- ethylmaleimide in rat sympathetic neurons

MS Shapiro, LP Wollmuth and B Hille
Journal of Neuroscience 1 November 1994, 14 (11) 7109-7116; DOI: https://doi.org/10.1523/JNEUROSCI.14-11-07109.1994
MS Shapiro
Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LP Wollmuth
Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Hille
Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The actions of N-ethylmaleimide (NEM), a sulfhydryl alkylating agent, on G-protein-mediated inhibition of N-type Ca2+ channels in adult rat superior cervical ganglion (SCG) neurons were studied using whole-cell voltage clamp. In SCG neurons, inhibition of ICa occurs by at least three separable pathways: one pertussis toxin (PTX) sensitive and voltage dependent, and two PTX insensitive and voltage independent. NEM blocked PTX-sensitive inhibition nearly completely, with only small effects on PTX-insensitive inhibition. Somatostatin inhibition is completely PTX sensitive and was wholly blocked by a 120 sec exposure to 50 microM NEM, with shorter exposure times producing a less complete block. Inhibition of ICa by norepinephrine (NE) is approximately half PTX sensitive and was also approximately half NEM sensitive. One component of muscarinic inhibition is PTX insensitive, voltage independent, and mediated by a diffusible cytoplasmic messenger; this pathway was largely spared by NEM treatment. Another pathway is also PTX insensitive and voltage independent, used by substance P, and was also largely NEM insensitive. Hence, in SCG neurons, NEM selectively inactivates PTX-sensitive G-proteins. We also find evidence that the PTX-insensitive action of NE is distinct from the other PTX-insensitive pathways, and therefore assign it to a fourth signaling pathway.

Back to top

In this issue

The Journal of Neuroscience: 14 (11)
Journal of Neuroscience
Vol. 14, Issue 11
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N- ethylmaleimide in rat sympathetic neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N- ethylmaleimide in rat sympathetic neurons
MS Shapiro, LP Wollmuth, B Hille
Journal of Neuroscience 1 November 1994, 14 (11) 7109-7116; DOI: 10.1523/JNEUROSCI.14-11-07109.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N- ethylmaleimide in rat sympathetic neurons
MS Shapiro, LP Wollmuth, B Hille
Journal of Neuroscience 1 November 1994, 14 (11) 7109-7116; DOI: 10.1523/JNEUROSCI.14-11-07109.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.