Abstract
The carbohydrate epitope L2/HNK-1 (hereafter designated L2) is expressed in the adult mouse by myelinating Schwann cells of ventral roots and muscle nerves, but rarely by those of dorsal roots or cutaneous nerves. Since substrate-coated L2 glycolipids promote outgrowth of cultured motor but not sensory neurons, L2 may thus influence the preferential reinnervation of muscle nerves by regenerating motor axons in vivo. In the present study, we have analyzed the influence of regenerating axons on L2 expression by reinnervated Schwann cells by directing motor or sensory axons into the muscle and cutaneous branches of femoral nerves of 8-week-old mice. We observed that regenerating axons from cutaneous branches did not lead to immunocytochemically detectable L2 expression in muscle or cutaneous nerve branches. Axons regenerating from muscle branches led to a weak L2 expression by few Schwann cells of the cutaneous branch, but provoked a strong L2 expression by many Schwann cells of the muscle branch. Myelinating Schwann cells previously associated with motor axons thus differed from previously sensory axon-associated myelinating Schwann cells in their ability to express L2 when contacted by motor axons. This upregulation of L2 expression during critical stages of reinnervation may provide motor axons regenerating into the appropriate, muscle pathways with an advantage over those regenerating into the inappropriate, sensory pathways.