Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The computation of position sense from spindles in mono- and multiarticular muscles

SH Scott and GE Loeb
Journal of Neuroscience 1 December 1994, 14 (12) 7529-7540; DOI: https://doi.org/10.1523/JNEUROSCI.14-12-07529.1994
SH Scott
MRC Group in Sensory-Motor Physiology, Queen's University, Kingston, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GE Loeb
MRC Group in Sensory-Motor Physiology, Queen's University, Kingston, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It is known that muscle spindles provide the majority of information about limb position, but little is known about how position sense is computed from their signals. We have developed a family of musculoskeletal models in order to determine some of the fundamental properties associated with transforming noisy spindle information into putative internal coordinate frames for position sense. A two-joint model was developed containing one biarticular and two monoarticular muscles with a total of 1000 sensors distributed among them. The sensors were assumed to function like spindle secondary afferents under fusimotor control designed to optimize their ability to encode static position in the presence of constant output noise. The optimal distribution of sensors was found to depend strongly on the coordinate frame in which position was measured (intersegmental angle, segment orientation, or end-point of the limb) and on the topology of the biarticular muscle with respect to the plane of motion. A similar analysis was performed for an anthropometric model of the human arm, using previously published counts of muscle spindles. In general, the actual distribution of spindles about the elbow and shoulder does not seem to favor any single coordinate frame for position sense. We also looked at the potential accuracy in detecting changes in joint angles based on the distribution of muscle spindles throughout the human body. The distribution of spindles about individual joints accounts well for psychophysical data showing a proximodistal descending gradient of angular resolution that partially reflects the relative importance of more proximal joints for determining the location of the end-point.

Back to top

In this issue

The Journal of Neuroscience: 14 (12)
Journal of Neuroscience
Vol. 14, Issue 12
1 Dec 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The computation of position sense from spindles in mono- and multiarticular muscles
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The computation of position sense from spindles in mono- and multiarticular muscles
SH Scott, GE Loeb
Journal of Neuroscience 1 December 1994, 14 (12) 7529-7540; DOI: 10.1523/JNEUROSCI.14-12-07529.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The computation of position sense from spindles in mono- and multiarticular muscles
SH Scott, GE Loeb
Journal of Neuroscience 1 December 1994, 14 (12) 7529-7540; DOI: 10.1523/JNEUROSCI.14-12-07529.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.