Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

ATP mediates fast synaptic potentials in enteric neurons

JJ Galligan and PP Bertrand
Journal of Neuroscience 1 December 1994, 14 (12) 7563-7571; DOI: https://doi.org/10.1523/JNEUROSCI.14-12-07563.1994
JJ Galligan
Department of Pharmacology and Toxicology, Michigan State University, East Lansing 48824.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PP Bertrand
Department of Pharmacology and Toxicology, Michigan State University, East Lansing 48824.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Conventional intracellular electrophysiological methods were used to study fast synaptic transmission in the myenteric plexus of guinea pig ileum in vitro. Fast excitatory postsynaptic potentials (fEPSPs) were evoked in 98 neurons following single stimuli applied to interganglionic connectives. The nicotinic antagonist hexamethonium (100 microM) reduced fEPSPs by 83% in 37 neurons; these fEPSPs were considered to be cholinergic. In 61 neurons, hexamethonium reduced fEPSPs by 33%; fEPSPs recorded in the presence of hexamethonium were considered to be noncholinergic. Similar data were obtained using the nicotinic antagonist mecamylamine (10 microM) to block fEPSPs. Hexamethonium or mecamylamine completely blocked depolarizations caused by acetylcholine (ACh) applied by ionophoresis. The P2 receptor antagonist suramin (1–300 microM) inhibited noncholinergic fEPSPs in 30 cells; the suramin IC50 was 4 microM. Suramin (100 microM) did not block depolarizations caused by ACh or 5-HT, but suramin blocked depolarizations caused by ATP. Hexamethonium did not block ATP-induced depolarizations. The estimated reversal potential for suramin-sensitive fEPSPs and ATP-induced depolarizations was -25 and -16 mV, respectively. ATP responses were reduced in low-sodium (26 mM) extracellular solution, suggesting that ATP activates a cation channel. These data indicate that in myenteric nerves ATP, in addition to ACh, contributes to fast synaptic transmission.

Back to top

In this issue

The Journal of Neuroscience: 14 (12)
Journal of Neuroscience
Vol. 14, Issue 12
1 Dec 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
ATP mediates fast synaptic potentials in enteric neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
ATP mediates fast synaptic potentials in enteric neurons
JJ Galligan, PP Bertrand
Journal of Neuroscience 1 December 1994, 14 (12) 7563-7571; DOI: 10.1523/JNEUROSCI.14-12-07563.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
ATP mediates fast synaptic potentials in enteric neurons
JJ Galligan, PP Bertrand
Journal of Neuroscience 1 December 1994, 14 (12) 7563-7571; DOI: 10.1523/JNEUROSCI.14-12-07563.1994
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.