Abstract
A two-step hybridization/subtraction procedure was employed to isolate markers for the later stages of Purkinje cell differentiation. From this screen, a novel Shaw potassium channel cDNA (Kv3.3b) was identified that is developmentally regulated. Expression of this channel is highly enriched in the brain, particularly in the cerebellum, where its expression is confined to Purkinje cells and deep cerebellar nuclei. Sequence analysis revealed that it is an alternatively spliced form of the mouse Kv3.3 gene, and that the previously reported Kv3.3 mRNA (Ghanshani et al., 1992) is not expressed in cerebellum. Expression of the Kv3.3b mRNA begins in cerebellar Purkinje cells between postnatal day 8 (P8) and P10 and continues through adulthood, coinciding with elaboration of the mature Purkinje cell dendritic arbor. The timing of expression of Kv3.3b mRNA is maintained in mixed, dissociated primary cerebellar cell culture. These results suggest that the Kv3.3b K+ channel function is restricted to terminally differentiated Purkinje cells, and that analysis of the mechanisms governing its expression in vivo and in vitro can reveal molecular mechanisms governing Purkinje cell differentiation.