Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions

LT O'Connor, JC Lauterborn, CM Gall and MA Smith
Journal of Neuroscience 1 March 1994, 14 (3) 1141-1152; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01141.1994
LT O'Connor
Department of Anatomy and Neurobiology, University of California at Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Lauterborn
Department of Anatomy and Neurobiology, University of California at Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CM Gall
Department of Anatomy and Neurobiology, University of California at Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MA Smith
Department of Anatomy and Neurobiology, University of California at Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Agrin is a protein implicated in the formation and maintenance of the neuromuscular junction. In addition to motor neurons, agrin mRNA has been detected in the brains of embryonic rat and chick and adult marine ray, suggesting that this molecule may also be involved in the formation of synapses between neurons. As a step toward understanding agrin's role in the CNS, we utilized Northern blot and in situ hybridization techniques to analyze the regional distribution and cellular localization of agrin mRNA in the spinal cord and brain of adult rats. The results of these studies indicate that the agrin mRNA is expressed predominantly by neurons broadly distributed throughout the adult CNS. Moreover, expression of agrin mRNA is not restricted to cholinergic structures or regions of the brain receiving cholinergic input. Recently, RNA isolated from rat embryonic spinal cord was shown to contain four alternatively spliced agrin mRNAs, referred to as agrin0, agrin8, agrin11, and agrin19, each of which encodes agrin proteins that are active in acetylcholine receptor aggregating assays (Ferns et al., 1992). Using the polymerase chain reaction we demonstrate that all four of these agrin transcripts are expressed within the adult CNS. Agrin0, agrin8, and agrin19 were present in all regions analyzed. In contrast, agrin11 was detected only in forebrain. Results of these studies indicate that both the level of expression and pattern of alternative splicing of agrin mRNA are differentially regulated in the brain. The broad and predominantly neuronal distribution of agrin mRNA in the adult brain suggests that, in addition to its role at the neuromuscular junction, agrin may play a role in formation and maintenance of synapses between neurons in the CNS.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions
LT O'Connor, JC Lauterborn, CM Gall, MA Smith
Journal of Neuroscience 1 March 1994, 14 (3) 1141-1152; DOI: 10.1523/JNEUROSCI.14-03-01141.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions
LT O'Connor, JC Lauterborn, CM Gall, MA Smith
Journal of Neuroscience 1 March 1994, 14 (3) 1141-1152; DOI: 10.1523/JNEUROSCI.14-03-01141.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.