Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Modulation of a voltage-activated potassium channel by peptide growth factor receptors

LC Timpe and WJ Fantl
Journal of Neuroscience 1 March 1994, 14 (3) 1195-1201; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01195.1994
LC Timpe
Program of Excellence in Molecular Biology, University of California at San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WJ Fantl
Program of Excellence in Molecular Biology, University of California at San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Regulation of the activity of a cloned component of a voltage-activated K+ channel, Kv1.5, was studied by expressing the K+ channel and receptors for platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF) simultaneously in Xenopus oocytes. Receptor activation mediated a decline in the Kv1.5 current amplitude, with a half-time of about 20 min. The reduction in K+ current amplitude occurred with little change in the kinetics or voltage sensitivity of activation. A similar phenomenon was found when the human thrombin or rat 5-HT1c receptors, two receptors that increase phospholipase C activity, were tested in coexpression experiments. A mutant FGF receptor, which does not activate phospholipase C-gamma 1 but retains several of its other functions, did not modulate the Kv1.5 current. Simultaneous injection of inositol trisphosphate and superfusion of phorbol 12-myristate 13-acetate reproduced the modulation of the Kv1.5 current. These results demonstrate that the PDGF and FGF receptors can modulate a voltage-activated K+ channel by increasing phospholipase C activity, and suggest that PDGF or FGF may be able to alter rapidly the electrical excitability of neurons.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modulation of a voltage-activated potassium channel by peptide growth factor receptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Modulation of a voltage-activated potassium channel by peptide growth factor receptors
LC Timpe, WJ Fantl
Journal of Neuroscience 1 March 1994, 14 (3) 1195-1201; DOI: 10.1523/JNEUROSCI.14-03-01195.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Modulation of a voltage-activated potassium channel by peptide growth factor receptors
LC Timpe, WJ Fantl
Journal of Neuroscience 1 March 1994, 14 (3) 1195-1201; DOI: 10.1523/JNEUROSCI.14-03-01195.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.