Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve

AD Levi, V Guenard, P Aebischer and RP Bunge
Journal of Neuroscience 1 March 1994, 14 (3) 1309-1319; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01309.1994
AD Levi
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Guenard
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Aebischer
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RP Bunge
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The use of human Schwann cells (SCs) in transplantation to promote regeneration in central and peripheral neural tissues must be preceded by efforts to define the factors that regulate their functional expression. Adult-derived human SCs can be isolated and purified in culture, but the culture conditions that allow their full differentiation have not yet been defined. We tested the functional capacity of these cells to enhance axonal regeneration and myelinate regenerating axons in vivo by transplanting them into the damaged PNS of an immune-deficient rat. SCs were purified from human peripheral nerve obtained from organ donors. Semi-permeable guidance channels were filled with a 30% Matrigel containing solution with or without human SCs suspended at a density of 80 x 10(6) cells/ml. Channels were implanted within an 8 mm gap of the transfected sciatic nerve of nude female rats for a period of 4 weeks. Survival of the transplanted human SCs was established by dissociating nerve explants taken from the regenerated cable (after first placing them in culture for 5 d) and staining individual cells for a primate-specific NGF receptor (PNGFr) and S 100. Only one-half of the S 100-positive cells stained for the PNGFr, which indicated that the regenerated cable contained an approximately equal number of human and rat (host) SCs. The presence of some human myelin segments was confirmed by immune staining with an HNK- 1 antibody that specifically labels human but not rat myelin. The majority of the myelin segments in the regenerated cable, however, were produced by the rat SCs. The number of myelinated axons and the cross- sectional area of the cable were significantly greater in channels seeded with human SCs when compared to channels containing the diluted Matrigel solution alone. We conclude that purified cultured human SCs can survive and substantially enhance axonal regeneration when transplanted into the injured PNS of an immune-deficient rat. Some of the transplanted human SCs are capable of myelinating regenerating rat axons but are less successful than the host SCs.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve
AD Levi, V Guenard, P Aebischer, RP Bunge
Journal of Neuroscience 1 March 1994, 14 (3) 1309-1319; DOI: 10.1523/JNEUROSCI.14-03-01309.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve
AD Levi, V Guenard, P Aebischer, RP Bunge
Journal of Neuroscience 1 March 1994, 14 (3) 1309-1319; DOI: 10.1523/JNEUROSCI.14-03-01309.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.