Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat

TJ Grudt and JT Williams
Journal of Neuroscience 1 March 1994, 14 (3) 1646-1654; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01646.1994
TJ Grudt
Vollum Institute, Oregon Health Sciences University, Portland 97201.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JT Williams
Vollum Institute, Oregon Health Sciences University, Portland 97201.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The actions of opioid agonists in the substantia gelatinosa are important for their antinociceptive effects. In order to identify possible mechanisms underlying opioid actions in the substantia gelatinosa, the pre- and postsynaptic effects of opioid agonists on neurons of the substantia gelatinosa were examined using a brain slice preparation. Intracellular recordings were made from neurons of the substantia gelatinosa of the spinal trigeminal nucleus pars caudalis in guinea pig and rat. To correlate morphology and electrophysiology, neurons were filled with biocytin and visualized using HRP. The majority of neurons (86%) were hyperpolarized by [Met]5enkephalin (ME), and this was mimicked by the mu-opioid agonist (D-Ala2,N-Me-Phe4,Gly5- ol)enkephalin (DAMGO) but not the delta-opioid agonist (D- Pen2,5)enkephalin (DPDPE). Naloxone (300 nM) shifted the DAMGO dose- response 213-fold to the right, giving an estimated KD of 1.4 nM. Under voltage clamp, the ME current reversed polarity at the potassium equilibrium potential, indicating the hyperpolarization was due to an increase in potassium conductance. EPSPs mediated by glutamate were evoked by stimulating the spinal trigeminal tract, which contains the primary afferent fibers that synapse in the spinal trigeminal nucleus. The excitation produced by stimulating the spinal trigeminal tract was greatly enhanced in the presence of glycine and GABAA receptor antagonists, indicating that local inhibitory circuitry is activated by exciting the primary afferents. The EPSPs were reduced by mu- but not delta-opioid receptor activation. The degree of inhibition varied from 0 to 100%. These results indicate that opioid agonists cause inhibition in the substantia gelatinosa by both pre- and postsynaptic actions.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat
TJ Grudt, JT Williams
Journal of Neuroscience 1 March 1994, 14 (3) 1646-1654; DOI: 10.1523/JNEUROSCI.14-03-01646.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat
TJ Grudt, JT Williams
Journal of Neuroscience 1 March 1994, 14 (3) 1646-1654; DOI: 10.1523/JNEUROSCI.14-03-01646.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.