Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells

DG McMahon
Journal of Neuroscience 1 March 1994, 14 (3) 1722-1734; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01722.1994
DG McMahon
Department of Physiology and Biophysics, University of Kentucky, Lexington 40536–0084.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Electrical synaptic transmission is widespread in the vertebrate CNS and its modulation plays a critical role in altering the properties of coupled neural networks. In order to define further the mechanisms of electrical synaptic plasticity in the vertebrate retina, the electrophysiological characteristics of solitary horizontal cells and horizontal cell pairs from the zebrafish (Brachydanio rerio) were examined by whole-cell patch-clamp recordings from cells in primary cell culture. In solitary cells, the current-voltage relation exhibited inward current at potentials negative to -60 mV, a linear region of high resistance from -50 mV to 0 mV, and outward current positive to +20 mV. The inward current at negative potentials was blocked by substituting Cs+ for K+ in the extracellular medium, while the outward current at positive potentials was blocked by substitution of Cs+ for K+ in the pipette solution. Measurements of gap junctional conductance from electrically coupled cell pairs revealed that zebrafish horizontal cells expressed a mean junctional conductance of considerably smaller magnitude than other teleost retinal horizontal cells. Junctional conductance was found to be voltage dependent, exhibiting time- dependent closure with increasing transjunctional voltage. Voltage sensitivity was symmetrical about 0 mV junctional potential. At +/- 90 mV the ratio of steady state to peak current was approximately 0.5 and the time constant for inactivation of the junctional current was approximately 120 msec. Junctional conductance was also modulated by dopamine and cAMP. Pairs of horizontal cells responded to puff application of dopamine with a two- to threefold reduction in junctional conductance, but there was no discernible effect on extrajunctional conductances. The action of dopamine on coupling was mimicked by application of the dopamine agonist (+/-)-6,7-dihydroxy-2- amino-tetralin (ADTN) and the membrane permeable cAMP analog 8-bromo- cAMP. The selective D1 dopamine receptor antagonist SCH23390 blocked uncoupling by dopamine. These data provide a primary description of the electrophysiological characteristics of solitary horizontal cells and the electrical coupling between pairs of horizontal cells dissociated from the zebrafish retina. They indicate that zebrafish horizontal cells are distinct from the horizontal cells of other teleosts in their coupling characteristics. The results suggest that zebrafish horizontal cells exhibit differences in the regulation of synaptic assembly and maintenance that have important implications for the function of the zebrafish horizontal cell network in vivo.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells
DG McMahon
Journal of Neuroscience 1 March 1994, 14 (3) 1722-1734; DOI: 10.1523/JNEUROSCI.14-03-01722.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells
DG McMahon
Journal of Neuroscience 1 March 1994, 14 (3) 1722-1734; DOI: 10.1523/JNEUROSCI.14-03-01722.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.