Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Differential ability of human cutaneous nociceptors to signal mechanical pain and to produce vasodilatation

M Koltzenburg and HO Handwerker
Journal of Neuroscience 1 March 1994, 14 (3) 1756-1765; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01756.1994
M Koltzenburg
Neurologische Universitats-Klinik, Wurzburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HO Handwerker
Neurologische Universitats-Klinik, Wurzburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We investigated the ability of human nociceptive primary afferent neurons to encode mechanical pain and to produce vasodilatation. Pain was induced by shooting a light metal cylinder (0.3 g) at different velocities (6–18 m/sec) perpendicularly against the hairy skin of the hand. When single impact stimuli were applied, monotonically increasing stimulus-response functions were obtained in 10 psychophysical experiments using magnitude estimation techniques. In 35 microneurographic experiments nine unmyelinated afferents were recorded from the superficial radial nerve. All units responded readily to impact stimulation even at stimulus intensities that were not rated as painful. However, there was a close linear correlation between the number of action potentials evoked from the nociceptors and the psychophysical magnitude estimates of the perceived sensation or the stimulus intensity. This was also reflected by a corresponding increase of neurogenic vasodilatation. While two thin myelinated afferents displayed qualitatively similar responses 12 low-threshold mechanosensitive afferents (4 rapidly adapting, 5 slowly adapting type 1, 3 slowly adapting type II) failed to encode the intensity of the applied impact force and often became desensitized. This indicates that the total number of action potentials is the determinant of the magnitude of mechanical pain and the associated vasodilatation following single brief stimuli. By contrast, the close correlation between nociceptor activity and sensation changed when trains of mechanical impact stimuli (five stimuli of constant intensity, intratrain frequency of 1/32 to 2 Hz) were applied. Magnitude estimates of pain intensity were frequency dependent and stimuli with short interstimulus intervals were perceived as more painful than those delivered with long intervals. However, the total number of action potentials evoked from C-fibers was higher at longer interstimulus intervals than shorter intervals, thus yielding a negative correlation between the magnitude estimates of the perceived painful sensation and the number of action potentials elicited from nociceptive afferents. This suggests that temporal summation of the nociceptive discharge at central neurons becomes increasingly more important for the sensory discriminative experience of pain evoked by repetitive stimulation. We conclude that human nociceptive C-fibers signal brief noxious mechanical stimuli by the total number of action potentials evoked during a short period of time. However, with repetitive stimulation the total number of action potentials evoked from nociceptors is less important for evoking pain and temporal summation of the nociceptive primary afferent discharge becomes the crucial factor for signaling the magnitude of sensation.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential ability of human cutaneous nociceptors to signal mechanical pain and to produce vasodilatation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Differential ability of human cutaneous nociceptors to signal mechanical pain and to produce vasodilatation
M Koltzenburg, HO Handwerker
Journal of Neuroscience 1 March 1994, 14 (3) 1756-1765; DOI: 10.1523/JNEUROSCI.14-03-01756.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential ability of human cutaneous nociceptors to signal mechanical pain and to produce vasodilatation
M Koltzenburg, HO Handwerker
Journal of Neuroscience 1 March 1994, 14 (3) 1756-1765; DOI: 10.1523/JNEUROSCI.14-03-01756.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.