Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices

WA Suzuki and DG Amaral
Journal of Neuroscience 1 March 1994, 14 (3) 1856-1877; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-01856.1994
WA Suzuki
Group in Neurosciences, University of California at San Diego, La Jolla 92093.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DG Amaral
Group in Neurosciences, University of California at San Diego, La Jolla 92093.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The perirhinal and parahippocampal cortices constitute the major sources of cortical input to the monkey entorhinal cortex. Neuropsychological studies have shown that these three cortical regions contribute in an important way to normal memory function. We have investigated the topographic and laminar organization of the reciprocal projections between the entorhinal cortex and these two adjacent cortical areas by placing anterograde and retrograde tracers in all three regions. There were three major findings. First, the perirhinal and parahippocampal cortices have distinct but partially overlapping interconnections with the entorhinal cortex. The perirhinal cortex tends to be interconnected with the rostral two-thirds of the entorhinal cortex while the parahippocampal cortex tends to be interconnected with approximately the caudal two-thirds of the entorhinal cortex. Second, the degree of reciprocity of the interconnections of the entorhinal cortex with the perirhinal and parahippocampal cortices differs. The parahippocampal/entorhinal connections have a high degree of reciprocity. In contrast, the degree of reciprocity of the perirhinal/entorhinal interconnections varies depending on the mediolateral position within the perirhinal cortex; medial portions of the perirhinal cortex exhibit a higher degree of reciprocity with the entorhinal cortex than lateral portions. Third, the projections from the perirhinal and parahippocampal cortices to the entorhinal cortex resemble a feedforward projection, while the projections from the entorhinal cortex to the perirhinal and parahippocampal cortices resemble a feedback projection pattern.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices
WA Suzuki, DG Amaral
Journal of Neuroscience 1 March 1994, 14 (3) 1856-1877; DOI: 10.1523/JNEUROSCI.14-03-01856.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices
WA Suzuki, DG Amaral
Journal of Neuroscience 1 March 1994, 14 (3) 1856-1877; DOI: 10.1523/JNEUROSCI.14-03-01856.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.