Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Differential expression of Shaw-related K+ channels in the rat central nervous system

M Weiser, E Vega-Saenz de Miera, C Kentros, H Moreno, L Franzen, D Hillman, H Baker and B Rudy
Journal of Neuroscience 1 March 1994, 14 (3) 949-972; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-00949.1994
M Weiser
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Vega-Saenz de Miera
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Kentros
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Moreno
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Franzen
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Hillman
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Baker
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Rudy
Department of Physiology and Biophysics, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The family of mammalian genes related to the Drosophila Shaker gene, consisting of four subfamilies, is thought to encode subunits of tetrameric voltage-gated K+ channels. There is compelling evidence that subunits of the same subfamily, but not of different subfamilies, form heteromultimeric channels in vitro, and thus, each gene subfamily is postulated to encode components of an independent channel system. In order to identify cells with native channels containing subunits of one of these subfamilies (Shaw-related or ShIII), the cellular distribution of ShIII transcripts was examined by Northern blot analysis and in situ hybridization. Three of four ShIII genes (KV3.1, KV3.2, and KV3.3) are expressed mainly in the CNS. KV3.4 transcripts are also present in the CNS but are more abundant in skeletal muscle. In situ hybridization studies in the CNS reveal discrete and specific neuronal populations that prominently express ShIII mRNAs, both in projecting and in local circuit neurons. In the cerebral cortex, hippocampus, and caudate- putamen, subsets of neurons can be distinguished by the expression of specific ShIII mRNAs. Each ShIII gene exhibits a unique pattern of expression; however, many neuronal populations expressing KV3.1 transcripts also express KV3.3 mRNAs. Furthermore, KV3.4 transcripts are present, albeit at lower levels, in several of the neuronal populations that also express KV3.1 and/or KV3.3 mRNAs, revealing a high potential for heteromultimer formation between the products of three of the four genes. Expression of ShIII cRNAs in Xenopus oocytes was used to explore the functional consequences of heteromultimer formation between ShIII subunits. Small amounts of KV3.4 cRNA, which expresses small, fast-inactivating currents when injected alone, produced fast-inactivating currents that are severalfold larger when coinjected with an excess of KV3.1 or KV3.3 cRNA. This amplification is due to both an increase in single-channel conductance in the heteromultimeric channels and the observation that less than four, perhaps even a single KV3.4 subunit is sufficient to impart fast- inactivating properties to the channel. The oocyte experiments indicate that the apparently limited, low-level expression of KV3.4 in the CNS is potentially significant. The anatomical studies suggest that heteromultimer formation between ShIII proteins might be a common feature in the CNS. Moreover, the possibility that the subunit composition of heteromultimers varies in different neurons should be considered, since the ratios of overlapping signals change from one neuronal population to another. In order to proceed with functional analysis of native ShIII channels, it is important to known which subunit compositions might occur in vivo. The studies presented here provide important clues for the identification of native homo- and heteromultimeric ShIII channels in neurons.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential expression of Shaw-related K+ channels in the rat central nervous system
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Differential expression of Shaw-related K+ channels in the rat central nervous system
M Weiser, E Vega-Saenz de Miera, C Kentros, H Moreno, L Franzen, D Hillman, H Baker, B Rudy
Journal of Neuroscience 1 March 1994, 14 (3) 949-972; DOI: 10.1523/JNEUROSCI.14-03-00949.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential expression of Shaw-related K+ channels in the rat central nervous system
M Weiser, E Vega-Saenz de Miera, C Kentros, H Moreno, L Franzen, D Hillman, H Baker, B Rudy
Journal of Neuroscience 1 March 1994, 14 (3) 949-972; DOI: 10.1523/JNEUROSCI.14-03-00949.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.